MXene-Mediated Internal Electric Field in WO3/AgBr Nanocomposites Enhances Visible-Light-Driven Peroxymonosulfate-Activation and Dual-Mode Antibacterial Performance.
Mariya Midhu Francis, Ananya Bose, Nilesh Jaiswal, Mohit Garg, Jayati Ray Dutta, Ramakrishnan Ganesan
{"title":"MXene-Mediated Internal Electric Field in WO<sub>3</sub>/AgBr Nanocomposites Enhances Visible-Light-Driven Peroxymonosulfate-Activation and Dual-Mode Antibacterial Performance.","authors":"Mariya Midhu Francis, Ananya Bose, Nilesh Jaiswal, Mohit Garg, Jayati Ray Dutta, Ramakrishnan Ganesan","doi":"10.1002/smtd.202501360","DOIUrl":null,"url":null,"abstract":"<p><p>Designing heterojunctions that enable efficient charge separation without compromising redox potential is key to advancing visible-light-active photocatalysts for water treatment via advanced oxidation processes (AOPs). In this study, a rationally engineered WO<sub>3</sub>/AgBr/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene ternary composite is synthesized and comprehensively evaluated for photocatalytic and antibacterial efficacy. Electron paramagnetic resonance and radical scavenging analyses confirmed the light-induced generation of reactive oxygen species (ROS) such as <sup>•</sup>OH and O<sub>2</sub> <sup>•-</sup>. Supported by X-ray photoelectron spectroscopy and density functional theory, an \"indirect S-scheme\" charge transfer mechanism is proposed, where MXene facilitates selective recombination of low-energy carriers while conserving high-energy electrons and holes for efficient ROS production. The optimized composite exhibited a six-fold improvement in photocatalytic activity over pristine WO<sub>3</sub>, which further doubled with peroxymonosulfate (PMS), achieving a twelve-fold enhancement overall. Antibacterial studies under dark and light conditions reveal potent dual-mode disinfection, with effective inactivation of Escherichia coli and Staphylococcus aureus. Agarose gel electrophoresis confirmed substantial DNA degradation in PMS-assisted conditions, minimizing the risk of bacterial resuscitation. This multifunctional material, combining efficient charge dynamics, visible-light responsiveness, and strong biocidal action, holds significant promise for integrated pollutant degradation and microbial disinfection in next-generation AOP frameworks.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01360"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501360","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing heterojunctions that enable efficient charge separation without compromising redox potential is key to advancing visible-light-active photocatalysts for water treatment via advanced oxidation processes (AOPs). In this study, a rationally engineered WO3/AgBr/Ti3C2Tx MXene ternary composite is synthesized and comprehensively evaluated for photocatalytic and antibacterial efficacy. Electron paramagnetic resonance and radical scavenging analyses confirmed the light-induced generation of reactive oxygen species (ROS) such as •OH and O2•-. Supported by X-ray photoelectron spectroscopy and density functional theory, an "indirect S-scheme" charge transfer mechanism is proposed, where MXene facilitates selective recombination of low-energy carriers while conserving high-energy electrons and holes for efficient ROS production. The optimized composite exhibited a six-fold improvement in photocatalytic activity over pristine WO3, which further doubled with peroxymonosulfate (PMS), achieving a twelve-fold enhancement overall. Antibacterial studies under dark and light conditions reveal potent dual-mode disinfection, with effective inactivation of Escherichia coli and Staphylococcus aureus. Agarose gel electrophoresis confirmed substantial DNA degradation in PMS-assisted conditions, minimizing the risk of bacterial resuscitation. This multifunctional material, combining efficient charge dynamics, visible-light responsiveness, and strong biocidal action, holds significant promise for integrated pollutant degradation and microbial disinfection in next-generation AOP frameworks.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.