{"title":"Review of nitrogen cycling in temperate winter soil under climate change.","authors":"Madhumita Sahoo, Domenico Baù, Steven F Thornton","doi":"10.1007/s11356-025-36932-0","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the biogeochemical cycling of nitrogen (N) in soils under temperate climates during winter has received growing attention due to rising N emissions and the accumulation of N on the soil surface and in nearby water bodies. While the N cycle has traditionally been considered to slow during cold periods, recent studies show that freeze-thaw cycles (FTCs) can significantly reshape N dynamics by altering soil structure and stimulating microbial activity. This review synthesizes key abiotic drivers, such as soil moisture, temperature, and snow cover, along with anthropogenic influences that affect N transformations and transport in winter. We identified the key research gaps in the existing approaches and emphasized the need to incorporate winter N fluxes into annual N budgets to improve our understanding of terrestrial N cycling under climate change.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36932-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the biogeochemical cycling of nitrogen (N) in soils under temperate climates during winter has received growing attention due to rising N emissions and the accumulation of N on the soil surface and in nearby water bodies. While the N cycle has traditionally been considered to slow during cold periods, recent studies show that freeze-thaw cycles (FTCs) can significantly reshape N dynamics by altering soil structure and stimulating microbial activity. This review synthesizes key abiotic drivers, such as soil moisture, temperature, and snow cover, along with anthropogenic influences that affect N transformations and transport in winter. We identified the key research gaps in the existing approaches and emphasized the need to incorporate winter N fluxes into annual N budgets to improve our understanding of terrestrial N cycling under climate change.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.