Engineering microbiomes for natural product discovery and production.

IF 10.6 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Francesco Del Carratore, Rainer Breitling
{"title":"Engineering microbiomes for natural product discovery and production.","authors":"Francesco Del Carratore, Rainer Breitling","doi":"10.1039/d5np00038f","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: 2021 to 2025Microbial communities represent a vast and largely untapped source of natural products with potential applications in various fields, including medicine, agriculture, and the biomanufacturing industry. Secondary metabolites play a crucial role in mediating interspecies interactions within these communities, influencing their structure and function. Recent advances in microbial genetic engineering and multi-omics technologies have enabled the harnessing of these interactions for enhanced natural product discovery and production. These techniques, coupled with systems biology and mathematical modelling, allow for the rational design and manipulation of microbial consortia to elicit the expression of cryptic biosynthetic gene clusters and to optimize the production of desired compounds. Additionally, direct mining of microbiomes using metagenomics, metatranscriptomics, and metabolomics has revealed a wealth of novel biosynthetic gene clusters and secondary metabolites with potential therapeutic and industrial value. Despite the challenges associated with cultivating and characterizing diverse microbial species, ongoing advancements in computational tools and data analysis are rapidly expanding our ability to explore and exploit the seemingly inexhaustible reservoir of natural products hidden within microbial communities.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00038f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Covering: 2021 to 2025Microbial communities represent a vast and largely untapped source of natural products with potential applications in various fields, including medicine, agriculture, and the biomanufacturing industry. Secondary metabolites play a crucial role in mediating interspecies interactions within these communities, influencing their structure and function. Recent advances in microbial genetic engineering and multi-omics technologies have enabled the harnessing of these interactions for enhanced natural product discovery and production. These techniques, coupled with systems biology and mathematical modelling, allow for the rational design and manipulation of microbial consortia to elicit the expression of cryptic biosynthetic gene clusters and to optimize the production of desired compounds. Additionally, direct mining of microbiomes using metagenomics, metatranscriptomics, and metabolomics has revealed a wealth of novel biosynthetic gene clusters and secondary metabolites with potential therapeutic and industrial value. Despite the challenges associated with cultivating and characterizing diverse microbial species, ongoing advancements in computational tools and data analysis are rapidly expanding our ability to explore and exploit the seemingly inexhaustible reservoir of natural products hidden within microbial communities.

用于天然产物发现和生产的工程微生物组。
微生物群落是一个巨大的、尚未开发的天然产品来源,在医药、农业和生物制造业等各个领域都有潜在的应用。次生代谢物在这些群落的种间相互作用中起着至关重要的作用,影响着它们的结构和功能。微生物基因工程和多组学技术的最新进展使得利用这些相互作用来增强天然产物的发现和生产成为可能。这些技术与系统生物学和数学建模相结合,允许合理设计和操纵微生物群落,以引发隐生物合成基因簇的表达,并优化所需化合物的生产。此外,利用宏基因组学、亚转录组学和代谢组学直接挖掘微生物组已经发现了大量具有潜在治疗和工业价值的新型生物合成基因簇和次级代谢物。尽管与培养和描述不同微生物物种相关的挑战,计算工具和数据分析的不断进步正在迅速扩大我们探索和开发隐藏在微生物群落中看似取之不尽的天然产物库的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信