Hainan Chen, Jinsi Chen, Li Huang, Xingqiang Lai, Kai Xia, Qiying Lu, Bingbing Xie, Yinong Huang, Yuan Qiu, Tao Wang, Jianqi Feng, Yuanjun Guan, Siyao Che, Jiancheng Wang, Andy Peng Xiang
{"title":"Mitochondria-Localized Nestin Protects Mesenchymal Stem Cells from Senescence by Maintaining Cristae Structure and Function.","authors":"Hainan Chen, Jinsi Chen, Li Huang, Xingqiang Lai, Kai Xia, Qiying Lu, Bingbing Xie, Yinong Huang, Yuan Qiu, Tao Wang, Jianqi Feng, Yuanjun Guan, Siyao Che, Jiancheng Wang, Andy Peng Xiang","doi":"10.1002/advs.202507759","DOIUrl":null,"url":null,"abstract":"<p><p>Nestin, a well-characterized intermediate filament protein expressed in stem cells, is increasingly recognized for its non-canonical roles in diverse subcellular compartments. Here, a novel mitochondrial localization of Nestin in human mesenchymal stem cells (hMSCs) is identified, where it functions as a critical protector against mitochondrial dysfunction and cellular senescence. It is demonstrated that Nestin is imported into the mitochondrial intermembrane space via its N-terminal mitochondrial targeting sequence through Translocase of the Outer Mitochondrial Membrane 20 (TOM20)-dependent machinery. Within mitochondria, Nestin directly interacts with Mic60 to maintain cristae architecture and sustain oxidative phosphorylation. Genetic ablation of mitochondrial Nestin triggers cristae disorganization, respiratory deficiency, and premature senescence in hMSCs. Strikingly, targeted restoration of the Mic60-binding Tail3 domain of Nestin is sufficient to rescue cristae morphology, mitochondrial function, and senescence phenotypes. These findings establish a non-filamentous role for Nestin in mitochondrial quality control and propose a new therapeutic strategy for age-related disorders through modulation of mitochondrial Nestin-Mic60 interactions.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e07759"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202507759","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nestin, a well-characterized intermediate filament protein expressed in stem cells, is increasingly recognized for its non-canonical roles in diverse subcellular compartments. Here, a novel mitochondrial localization of Nestin in human mesenchymal stem cells (hMSCs) is identified, where it functions as a critical protector against mitochondrial dysfunction and cellular senescence. It is demonstrated that Nestin is imported into the mitochondrial intermembrane space via its N-terminal mitochondrial targeting sequence through Translocase of the Outer Mitochondrial Membrane 20 (TOM20)-dependent machinery. Within mitochondria, Nestin directly interacts with Mic60 to maintain cristae architecture and sustain oxidative phosphorylation. Genetic ablation of mitochondrial Nestin triggers cristae disorganization, respiratory deficiency, and premature senescence in hMSCs. Strikingly, targeted restoration of the Mic60-binding Tail3 domain of Nestin is sufficient to rescue cristae morphology, mitochondrial function, and senescence phenotypes. These findings establish a non-filamentous role for Nestin in mitochondrial quality control and propose a new therapeutic strategy for age-related disorders through modulation of mitochondrial Nestin-Mic60 interactions.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.