Fabian Schmidt, Constantin Blessing, Markus Enzweiler, Abhinav Valada
{"title":"Visual-Inertial SLAM for Unstructured Outdoor Environments: Benchmarking the Benefits and Computational Costs of Loop Closing","authors":"Fabian Schmidt, Constantin Blessing, Markus Enzweiler, Abhinav Valada","doi":"10.1002/rob.22581","DOIUrl":null,"url":null,"abstract":"<p>Simultaneous localization and mapping (SLAM) is essential for mobile robotics, enabling autonomous navigation in dynamic, unstructured outdoor environments without relying on external positioning systems. These environments pose significant challenges due to variable lighting, weather conditions, and complex terrain. Visual-Inertial SLAM has emerged as a promising solution for robust localization under such conditions. This paper benchmarks several open-source visual-Inertial SLAM systems, including traditional methods (ORB-SLAM3, VINS-Fusion, OpenVINS, Kimera, and SVO Pro) and learning-based approaches (HFNet-SLAM, AirSLAM), to evaluate their performance in unstructured natural outdoor settings. We focus on the impact of loop closing on localization accuracy and computational demands, providing a comprehensive analysis of these systems' effectiveness in real-world environments and especially their application to embedded systems in outdoor robotics. Our contributions further include an assessment of varying frame rates on localization accuracy and computational load. The findings highlight the importance of loop closing in improving localization accuracy while managing computational resources efficiently, offering valuable insights for optimizing Visual-Inertial SLAM systems for practical outdoor applications in mobile robotics. The data set and the benchmark code are available under https://github.com/iis-esslingen/vi-slam_lc_benchmark.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 7","pages":"3726-3747"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22581","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22581","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous localization and mapping (SLAM) is essential for mobile robotics, enabling autonomous navigation in dynamic, unstructured outdoor environments without relying on external positioning systems. These environments pose significant challenges due to variable lighting, weather conditions, and complex terrain. Visual-Inertial SLAM has emerged as a promising solution for robust localization under such conditions. This paper benchmarks several open-source visual-Inertial SLAM systems, including traditional methods (ORB-SLAM3, VINS-Fusion, OpenVINS, Kimera, and SVO Pro) and learning-based approaches (HFNet-SLAM, AirSLAM), to evaluate their performance in unstructured natural outdoor settings. We focus on the impact of loop closing on localization accuracy and computational demands, providing a comprehensive analysis of these systems' effectiveness in real-world environments and especially their application to embedded systems in outdoor robotics. Our contributions further include an assessment of varying frame rates on localization accuracy and computational load. The findings highlight the importance of loop closing in improving localization accuracy while managing computational resources efficiently, offering valuable insights for optimizing Visual-Inertial SLAM systems for practical outdoor applications in mobile robotics. The data set and the benchmark code are available under https://github.com/iis-esslingen/vi-slam_lc_benchmark.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.