Underwater Manipulator Trajectory Planning Based on Improved Particle Swarm Optimization Algorithm

IF 5.2 2区 计算机科学 Q2 ROBOTICS
Huawei Jin, Guowen Yue
{"title":"Underwater Manipulator Trajectory Planning Based on Improved Particle Swarm Optimization Algorithm","authors":"Huawei Jin,&nbsp;Guowen Yue","doi":"10.1002/rob.22603","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents an innovative motion planning approach for underwater robotic arms, grounded in the multistrategy improved particle swarm optimization (PSO) (strategy adaptive particle swarm optimization [SAPSO]) algorithm. The SAPSO algorithm amalgamates the sine–cosine algorithm with the sparrow search algorithm, thereby enhancing the convergence efficiency and the capability to escape local optima inherent in PSO. Through the implementation of a 3–5–3 polynomial trajectory planning method, the proposed approach ensures a seamless transition from the initial to the target position while maintaining the continuity and fluidity of movement. Both simulation and underwater experimental analyses have validated the precision and efficacy of the SAPSO algorithm in collision detection, joint parameter optimization, and target capture operations. The outcomes underscore that the SAPSO algorithm considerably amplifies the speed and stability of trajectory planning and exhibits innovation and efficiency in the domain of underwater robotic arm motion planning.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 7","pages":"3986-4008"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22603","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative motion planning approach for underwater robotic arms, grounded in the multistrategy improved particle swarm optimization (PSO) (strategy adaptive particle swarm optimization [SAPSO]) algorithm. The SAPSO algorithm amalgamates the sine–cosine algorithm with the sparrow search algorithm, thereby enhancing the convergence efficiency and the capability to escape local optima inherent in PSO. Through the implementation of a 3–5–3 polynomial trajectory planning method, the proposed approach ensures a seamless transition from the initial to the target position while maintaining the continuity and fluidity of movement. Both simulation and underwater experimental analyses have validated the precision and efficacy of the SAPSO algorithm in collision detection, joint parameter optimization, and target capture operations. The outcomes underscore that the SAPSO algorithm considerably amplifies the speed and stability of trajectory planning and exhibits innovation and efficiency in the domain of underwater robotic arm motion planning.

Abstract Image

基于改进粒子群优化算法的水下机械臂轨迹规划
提出了一种基于多策略改进粒子群优化(PSO)(策略自适应粒子群优化[SAPSO])算法的水下机械臂运动规划方法。该算法将正弦余弦算法与麻雀搜索算法相结合,提高了粒子群算法的收敛效率和逃避局部最优的能力。该方法通过实施3-5-3多项式轨迹规划方法,保证了从初始位置到目标位置的无缝过渡,同时保持了运动的连续性和流动性。仿真和水下实验分析验证了SAPSO算法在碰撞检测、联合参数优化和目标捕获等方面的精度和有效性。结果表明,SAPSO算法显著提高了轨迹规划的速度和稳定性,在水下机械臂运动规划领域具有创新性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信