Surface-Engineered Solar-Driven Interfacial Evaporation: Innovations and Challenges (Adv. Mater. Interfaces 18/2025)

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xiayun Huang, Jie Zhu, Dong Wu, Qichen Zhang, Zhihong Nie
{"title":"Surface-Engineered Solar-Driven Interfacial Evaporation: Innovations and Challenges (Adv. Mater. Interfaces 18/2025)","authors":"Xiayun Huang,&nbsp;Jie Zhu,&nbsp;Dong Wu,&nbsp;Qichen Zhang,&nbsp;Zhihong Nie","doi":"10.1002/admi.70160","DOIUrl":null,"url":null,"abstract":"<p><b>Surface-Engineered Solar Interfacial Evaporator</b></p><p>In article 10.1002/202500371, Xiayun Huang, Zhihong Nie, and co-workers review recent advances in surface-engineered solar evaporation, highlighting how polyelectrolyte-modified interfaces enhance solar-driven evaporation by disrupting hydrogen bonding and activating interfacial water, thereby enabling multifunctional purification and resource recovery systems. The cover design draws inspiration from traditional Chinese ink painting to symbolize the interplay between interfacial polyelectrolyte engineering and water activation, reflecting the harmony between materials science and nature.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 18","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.70160","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.70160","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface-Engineered Solar Interfacial Evaporator

In article 10.1002/202500371, Xiayun Huang, Zhihong Nie, and co-workers review recent advances in surface-engineered solar evaporation, highlighting how polyelectrolyte-modified interfaces enhance solar-driven evaporation by disrupting hydrogen bonding and activating interfacial water, thereby enabling multifunctional purification and resource recovery systems. The cover design draws inspiration from traditional Chinese ink painting to symbolize the interplay between interfacial polyelectrolyte engineering and water activation, reflecting the harmony between materials science and nature.

Abstract Image

表面工程太阳能驱动界面蒸发:创新与挑战(Adv. Mater。接口18/2025)
在10.1002/202500371文章中,黄夏云,聂志宏等综述了表面工程太阳能蒸发的最新进展,重点介绍了聚电解质修饰的界面如何通过破坏氢键和激活界面水来增强太阳能蒸发,从而实现多功能净化和资源回收系统。封面设计灵感来源于中国传统水墨画,象征界面聚电解质工程与水活化的相互作用,体现材料科学与自然的和谐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信