{"title":"Activation of Allenes by Diferrocenylphosphenium Ion: Isolation of a Wheland Intermediate of Ferrocene","authors":"Corina Stoian, Carolin Exner, Pim Puylaert, Moritz Hornig, Serhiy Demeshko, Malte Fischer, Emanuel Hupf, Jens Beckmann","doi":"10.1002/ceur.202500031","DOIUrl":null,"url":null,"abstract":"<p>The reaction of the diferrocenylphosphenium ion with four terminal allenes follows two different pathways, via allyl or vinyl carbocations, which proceed with electrophilic substitution reactions at one ferrocenyl moiety to form persistent Wheland intermediates and eventually alkenyldiferrocenylphosphonium salts. The reaction of the diferrocenylphosphenium ion with 2-(trimethylsilyl)-2,3-pentadiene affords a stable Wheland intermediate of ferrocene in high yields, which is isolated and fully characterized.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202500031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryEurope","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ceur.202500031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The reaction of the diferrocenylphosphenium ion with four terminal allenes follows two different pathways, via allyl or vinyl carbocations, which proceed with electrophilic substitution reactions at one ferrocenyl moiety to form persistent Wheland intermediates and eventually alkenyldiferrocenylphosphonium salts. The reaction of the diferrocenylphosphenium ion with 2-(trimethylsilyl)-2,3-pentadiene affords a stable Wheland intermediate of ferrocene in high yields, which is isolated and fully characterized.