Research Progress of Phase Change Materials for Thermal Management in Electronic Components

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xinbo Zheng, Haixuan Liu, Haoxin Lv, Yongshuang Xiao, Jiahui Lin, Hanhui Lei, Hassan Algadi, Junqi Hu, Xiaoteng Liu, Zhanhu Guo, Jintao Huang
{"title":"Research Progress of Phase Change Materials for Thermal Management in Electronic Components","authors":"Xinbo Zheng,&nbsp;Haixuan Liu,&nbsp;Haoxin Lv,&nbsp;Yongshuang Xiao,&nbsp;Jiahui Lin,&nbsp;Hanhui Lei,&nbsp;Hassan Algadi,&nbsp;Junqi Hu,&nbsp;Xiaoteng Liu,&nbsp;Zhanhu Guo,&nbsp;Jintao Huang","doi":"10.1002/admi.202500573","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of electronic equipment such as computers, mobile phones, cameras, power grids, cars and radars, the demand for electronic equipment is increasing. Moore's Law states that the quantity of transistors on a microchip continually grows. Electronic devices are becoming smaller and thinner. However, this leads to increasingly powerful electronic devices and higher peak temperatures, which shorten their service life and reducing performance. Phase Change Materials (PCM) provide benefits like a high latent heat of fusion, constant phase change temperature and fast phase change response speed, and has become a research focus to solve the problem of shortening service life. This paper primarily focuses on the heat storage mechanism of PCM, as well as its performance analysis and application in electronic components. To address the low thermal conductivity of PCMs, three approaches have been employed. Metal fins, adding nanomaterials, and adding porous metal foam.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 18","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500573","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of electronic equipment such as computers, mobile phones, cameras, power grids, cars and radars, the demand for electronic equipment is increasing. Moore's Law states that the quantity of transistors on a microchip continually grows. Electronic devices are becoming smaller and thinner. However, this leads to increasingly powerful electronic devices and higher peak temperatures, which shorten their service life and reducing performance. Phase Change Materials (PCM) provide benefits like a high latent heat of fusion, constant phase change temperature and fast phase change response speed, and has become a research focus to solve the problem of shortening service life. This paper primarily focuses on the heat storage mechanism of PCM, as well as its performance analysis and application in electronic components. To address the low thermal conductivity of PCMs, three approaches have been employed. Metal fins, adding nanomaterials, and adding porous metal foam.

Abstract Image

电子元件热管理相变材料的研究进展
随着计算机、手机、相机、电网、汽车、雷达等电子设备的快速发展,对电子设备的需求越来越大。摩尔定律指出,微芯片上晶体管的数量会不断增长。电子设备正变得越来越小、越来越薄。然而,这会导致越来越强大的电子设备和更高的峰值温度,从而缩短其使用寿命并降低性能。相变材料具有熔合潜热高、相变温度恒定、相变响应速度快等优点,已成为解决缩短使用寿命问题的研究热点。本文主要介绍了PCM的蓄热机理、性能分析及其在电子元件中的应用。为了解决pcm的低导热性,采用了三种方法。金属翅片,加入纳米材料,加入多孔金属泡沫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信