Coordinated Control of Autonomous Electric Vehicles With Lateral and Longitudinal Control Using a Hybrid Approach

IF 5.2 2区 计算机科学 Q2 ROBOTICS
Varsha Chaurasia, Amar Nath Tiwari, Saurabh Mani Tripathi
{"title":"Coordinated Control of Autonomous Electric Vehicles With Lateral and Longitudinal Control Using a Hybrid Approach","authors":"Varsha Chaurasia,&nbsp;Amar Nath Tiwari,&nbsp;Saurabh Mani Tripathi","doi":"10.1002/rob.22584","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The rise of Autonomous Electric Vehicles (AEVs) has presented formidable challenges in the automotive sector, demanding advanced sensor technology, intricate control systems, and sophisticated decision-making algorithms. Due to the inherently nonlinear dynamics and uncertainties associated with these vehicles, conventional control methods fall short of providing robust solutions. This study proposes a hybrid approach for coordinated longitudinal and lateral control in autonomous driving scenarios. Addressing lateral and longitudinal control, the research integrates road geometry and lateral dynamics considerations. Utilizing a Proportional Integral Derivative (PID) controller with Fire Hawk Optimizer (FHO) algorithm. This study optimizes controller gains for Nonlinear longitudinal dynamics, ensuring reliable speed tracking. Additionally, a Linear Parameter Varied-Models Predictive Controller (LPV-MPC) addresses the challenges related to time-varying longitudinal speeds and distance impact on vehicle lateral stability. Implementation in the matrix laboratory demonstrates the approach's superiority in terms of speed, precision, stability, trajectory tracking, and achieving a minimal lateral error of 0.0526 and mean error, mean absolute error and root mean squared error of 0.193, 0.087 and 0.108 respectively.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 7","pages":"3380-3398"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22584","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of Autonomous Electric Vehicles (AEVs) has presented formidable challenges in the automotive sector, demanding advanced sensor technology, intricate control systems, and sophisticated decision-making algorithms. Due to the inherently nonlinear dynamics and uncertainties associated with these vehicles, conventional control methods fall short of providing robust solutions. This study proposes a hybrid approach for coordinated longitudinal and lateral control in autonomous driving scenarios. Addressing lateral and longitudinal control, the research integrates road geometry and lateral dynamics considerations. Utilizing a Proportional Integral Derivative (PID) controller with Fire Hawk Optimizer (FHO) algorithm. This study optimizes controller gains for Nonlinear longitudinal dynamics, ensuring reliable speed tracking. Additionally, a Linear Parameter Varied-Models Predictive Controller (LPV-MPC) addresses the challenges related to time-varying longitudinal speeds and distance impact on vehicle lateral stability. Implementation in the matrix laboratory demonstrates the approach's superiority in terms of speed, precision, stability, trajectory tracking, and achieving a minimal lateral error of 0.0526 and mean error, mean absolute error and root mean squared error of 0.193, 0.087 and 0.108 respectively.

Abstract Image

基于混合控制的自动驾驶电动汽车横向和纵向协调控制
自动驾驶电动汽车(aev)的兴起给汽车行业带来了巨大的挑战,需要先进的传感器技术、复杂的控制系统和复杂的决策算法。由于这些车辆固有的非线性动力学和不确定性,传统的控制方法无法提供鲁棒性解决方案。本研究提出了一种自动驾驶场景下纵向和横向协调控制的混合方法。为了解决横向和纵向控制问题,该研究整合了道路几何和横向动力学方面的考虑。利用比例积分导数(PID)控制器与火鹰优化(FHO)算法。该研究优化了非线性纵向动力学的控制器增益,确保了可靠的速度跟踪。此外,线性参数变模型预测控制器(LPV-MPC)解决了随时间变化的纵向速度和距离对车辆横向稳定性的影响。在矩阵实验室的实现表明,该方法在速度、精度、稳定性、轨迹跟踪等方面具有优势,横向误差最小为0.0526,平均误差、平均绝对误差和均方根误差分别为0.193、0.087和0.108。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信