Dimensionless Physics-Informed Neural Network for Electromagnetic Field Modelling of Permanent Magnet Eddy Current Coupler

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiaxing Wang, Dazhi Wang, Sihan Wang, Wenhui Li, Yanqi Jiang
{"title":"Dimensionless Physics-Informed Neural Network for Electromagnetic Field Modelling of Permanent Magnet Eddy Current Coupler","authors":"Jiaxing Wang,&nbsp;Dazhi Wang,&nbsp;Sihan Wang,&nbsp;Wenhui Li,&nbsp;Yanqi Jiang","doi":"10.1049/elp2.70084","DOIUrl":null,"url":null,"abstract":"<p>To design the permanent magnetic eddy current couplers (PMECCs), modelling the magnetic field is essential. Traditional equivalent magnetic circuit methods and analytical methods often rely heavily on expert experience, whereas finite element methods (FEM) demand significant computational resources and time. Recently, the physics-informed neural network (PINN) has emerged as a novel approach for modelling electromagnetic fields. To fully harness the potential of PINN, eliminate reliance on data sets, and enhance the generalisation ability of multi-scale physical systems, we simplify the physical model of PMECCs and analyse its inherent boundary conditions based on the fundamental properties of electromagnetic fields. A dimensionless and unsupervised PINN, employing dimensional analysis to reduce the dimensions of the physical variables in the system was proposed. The dimensionless PINN (DPINN) is trained through unsupervised learning to solve the magnetic field equations and predict PMECC performance. Furthermore, dimensional analysis and transfer learning method are applied to enable the network to address a broader class of problems, resulting in a 92% reduction in training cost. The solution results, compared with those from the finite element method and analytical solution, exhibit similar error magnitudes (10<sup>−4</sup> Wb/m), confirming the method's high accuracy.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70084","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To design the permanent magnetic eddy current couplers (PMECCs), modelling the magnetic field is essential. Traditional equivalent magnetic circuit methods and analytical methods often rely heavily on expert experience, whereas finite element methods (FEM) demand significant computational resources and time. Recently, the physics-informed neural network (PINN) has emerged as a novel approach for modelling electromagnetic fields. To fully harness the potential of PINN, eliminate reliance on data sets, and enhance the generalisation ability of multi-scale physical systems, we simplify the physical model of PMECCs and analyse its inherent boundary conditions based on the fundamental properties of electromagnetic fields. A dimensionless and unsupervised PINN, employing dimensional analysis to reduce the dimensions of the physical variables in the system was proposed. The dimensionless PINN (DPINN) is trained through unsupervised learning to solve the magnetic field equations and predict PMECC performance. Furthermore, dimensional analysis and transfer learning method are applied to enable the network to address a broader class of problems, resulting in a 92% reduction in training cost. The solution results, compared with those from the finite element method and analytical solution, exhibit similar error magnitudes (10−4 Wb/m), confirming the method's high accuracy.

Abstract Image

Abstract Image

Abstract Image

无量纲物理信息神经网络永磁体涡流耦合器电磁场建模
为了设计永磁涡流耦合器(pmecc),建立磁场模型是必不可少的。传统的等效磁路方法和解析方法往往严重依赖专家经验,而有限元方法需要大量的计算资源和时间。最近,物理信息神经网络(PINN)作为一种新的电磁场建模方法出现了。为了充分发挥PINN的潜力,消除对数据集的依赖,增强多尺度物理系统的泛化能力,我们简化了pmecc的物理模型,并基于电磁场的基本性质分析了其固有边界条件。提出了一种利用量纲分析降低系统中物理变量维数的无量纲无监督平面神经网络。通过无监督学习训练无量纲PINN (DPINN)来求解磁场方程并预测PMECC的性能。此外,应用维度分析和迁移学习方法使网络能够解决更广泛的问题类别,从而使训练成本降低92%。与有限元法和解析解的结果相比,误差幅度相似(10−4 Wb/m),证实了该方法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信