Cao Boyang, T. A. Fedorenko, O. B. Chivkunova, A. E. Solovchenko, E. S. Lobakova, A. V. Oleskin
{"title":"Impact of Neurotransmitters on the Photosynthetic Pigment Content of the Green Microalga Haematococcus lacustris (Strains IPPAS H-239 and BM-1)","authors":"Cao Boyang, T. A. Fedorenko, O. B. Chivkunova, A. E. Solovchenko, E. S. Lobakova, A. V. Oleskin","doi":"10.1134/S0003683825601155","DOIUrl":null,"url":null,"abstract":"<p>The effects of the neurotransmitters serotonin (5-НТ), histamine, dopamine (DA), norepinephrine (NE), and acetylcholine (ACh) at concentrations of 0.1–10 μM on the contents of chlorophylls (<i>а</i> and <i>b</i>) and carotenoids in strains IPPAS B-239 and BM-1 of the microalga <i>Haematococcus lacustris</i> are considered. In the strain <i>H. lacustris</i> BM-1, all tested neurotransmitters except serotonin were found to stimulate carotenoid formation with an increase in the carotenoid content in the cells. The stimulatory effect was quite significant with acetylcholine and especially histamine and was manifested less with dopamine and norepinephrine. Carotenoid formation by strain IPPAS H-239 was only stimulated by acetylcholine and, to a lesser extent, by norepinephrine. The other neurotransmitters inhibited carotenoid formation. The total chlorophyll <i>a</i> and <i>b</i> content increased in the presence of all tested neurotransmitters except serotonin in strain BM-1. As for strain IPPAS H-239, its chlorophyll content was increased by acetylcholine and norepinephrine, whereas histamine and serotonin lowered the chlorophyll content. It is suggested that the tested neurotransmitters influence the vegetative cell—palmelloid cell—encysted cell transition, fixing it at the intermediate brown palmelloid stage characterized by significant chlorophyll and carotenoid contents.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"61 5","pages":"865 - 871"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683825601155","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of the neurotransmitters serotonin (5-НТ), histamine, dopamine (DA), norepinephrine (NE), and acetylcholine (ACh) at concentrations of 0.1–10 μM on the contents of chlorophylls (а and b) and carotenoids in strains IPPAS B-239 and BM-1 of the microalga Haematococcus lacustris are considered. In the strain H. lacustris BM-1, all tested neurotransmitters except serotonin were found to stimulate carotenoid formation with an increase in the carotenoid content in the cells. The stimulatory effect was quite significant with acetylcholine and especially histamine and was manifested less with dopamine and norepinephrine. Carotenoid formation by strain IPPAS H-239 was only stimulated by acetylcholine and, to a lesser extent, by norepinephrine. The other neurotransmitters inhibited carotenoid formation. The total chlorophyll a and b content increased in the presence of all tested neurotransmitters except serotonin in strain BM-1. As for strain IPPAS H-239, its chlorophyll content was increased by acetylcholine and norepinephrine, whereas histamine and serotonin lowered the chlorophyll content. It is suggested that the tested neurotransmitters influence the vegetative cell—palmelloid cell—encysted cell transition, fixing it at the intermediate brown palmelloid stage characterized by significant chlorophyll and carotenoid contents.
期刊介绍:
Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.