New epoxy resin as a high-performance corrosion inhibitor for steel: experimental and theoretical investigations

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anass Tazi, Omar Dagdag, Abdeslam El Amri, Mourad Rafik, Mouna Azogagh, Hasnaa Haidara, Hansang Kim, Abderrahim El Bachiri, Avni Berisha, Elyor Berdimurodov, Jasur Tursunqulov, Mohammed Rafik
{"title":"New epoxy resin as a high-performance corrosion inhibitor for steel: experimental and theoretical investigations","authors":"Anass Tazi,&nbsp;Omar Dagdag,&nbsp;Abdeslam El Amri,&nbsp;Mourad Rafik,&nbsp;Mouna Azogagh,&nbsp;Hasnaa Haidara,&nbsp;Hansang Kim,&nbsp;Abderrahim El Bachiri,&nbsp;Avni Berisha,&nbsp;Elyor Berdimurodov,&nbsp;Jasur Tursunqulov,&nbsp;Mohammed Rafik","doi":"10.1007/s10853-025-11486-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel epoxy resin, triglycidyl-dibenzylidene-thiosemicarbazide (TGDBTSC), was firstly synthesized and evaluated as an efficient defensive agent for mild steel in 1 M HCl. Electrochemical studied demonstrated excellent protection performance, with efficiencies reaching 93.2% at a concentration of 10⁻<sup>3</sup> M. The corrosion current density exhibited a substantial decline, from 983 to 66 µA cm⁻<sup>2</sup>, as measured by Potentiodynamic Polarization (PDP), while the charge transfer resistance underwent an increase from 34.7 to 312.8 Ω cm<sup>2</sup>, as measured by Electrochemical Impedance Spectroscopy (EIS). Thermodynamic studies revealed an activation energy of 40.57 kJ·mol⁻<sup>1</sup> and an enthalpy of activation of 37.97 kJ·mol⁻<sup>1</sup>, indicating an endothermic adsorption process. At approximately 328 K, the inhibition efficiency remained high (86.5%), thereby confirming the thermal stability of TGDBTSC. Surface analysis revealed a smooth and compact surface morphology of protected steel, accompanied by inhibitor adsorption. Density Functional Theory (DFT) calculations revealed a smaller energy gap (ΔE<sub>gap</sub> = 2.965 eV) and higher electron-donating ability (ΔN = 0.450) for the protonated form of TGDBTSC. Monte Carlo (MC) and molecular dynamics (MD) simulations further corroborated the strong adsorption affinity, with adsorption energies of − 180.65 kcal/mol and radial distribution function (RDF) peaks between 1.5 and 3.0 Å, indicative of chemisorption. These findings confirm the potential of TGDBTSC as a highly effective, durable, and thermally stable inhibitor for acid-treated steel corrosion.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 37","pages":"16952 - 16972"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11486-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel epoxy resin, triglycidyl-dibenzylidene-thiosemicarbazide (TGDBTSC), was firstly synthesized and evaluated as an efficient defensive agent for mild steel in 1 M HCl. Electrochemical studied demonstrated excellent protection performance, with efficiencies reaching 93.2% at a concentration of 10⁻3 M. The corrosion current density exhibited a substantial decline, from 983 to 66 µA cm⁻2, as measured by Potentiodynamic Polarization (PDP), while the charge transfer resistance underwent an increase from 34.7 to 312.8 Ω cm2, as measured by Electrochemical Impedance Spectroscopy (EIS). Thermodynamic studies revealed an activation energy of 40.57 kJ·mol⁻1 and an enthalpy of activation of 37.97 kJ·mol⁻1, indicating an endothermic adsorption process. At approximately 328 K, the inhibition efficiency remained high (86.5%), thereby confirming the thermal stability of TGDBTSC. Surface analysis revealed a smooth and compact surface morphology of protected steel, accompanied by inhibitor adsorption. Density Functional Theory (DFT) calculations revealed a smaller energy gap (ΔEgap = 2.965 eV) and higher electron-donating ability (ΔN = 0.450) for the protonated form of TGDBTSC. Monte Carlo (MC) and molecular dynamics (MD) simulations further corroborated the strong adsorption affinity, with adsorption energies of − 180.65 kcal/mol and radial distribution function (RDF) peaks between 1.5 and 3.0 Å, indicative of chemisorption. These findings confirm the potential of TGDBTSC as a highly effective, durable, and thermally stable inhibitor for acid-treated steel corrosion.

Abstract Image

新型环氧树脂作为钢的高性能缓蚀剂:实验与理论研究
本研究首次合成了一种新型环氧树脂——甘油三酯-二苄基-硫代氨基脲(TGDBTSC),并对其在1 M HCl中作为低碳钢的有效防护剂进行了评价。电化学研究证明了良好的保护性能,在10 - 3 m的浓度下,效率达到93.2%。根据电位极化(PDP)的测量,腐蚀电流密度从983到66 μ a cm - 2明显下降,而根据电化学阻抗谱(EIS)的测量,电荷转移电阻从34.7增加到312.8 Ω cm2。热力学研究表明,活化能为40.57 kJ·mol - 1,活化焓为37.97 kJ·mol - 1,说明这是一个吸热吸附过程。在328 K左右的温度下,TGDBTSC的缓蚀效率仍然很高(86.5%),从而证实了TGDBTSC的热稳定性。表面分析表明,保护钢表面形貌光滑致密,并伴有抑制剂的吸附。密度泛函理论(DFT)计算表明,质子化形式的TGDBTSC具有较小的能隙(ΔEgap = 2.965 eV)和较高的给电子能力(ΔN = 0.450)。蒙特卡罗(MC)和分子动力学(MD)模拟进一步证实了其较强的吸附亲和性,吸附能为−180.65 kcal/mol,径向分布函数(RDF)峰在1.5 ~ 3.0 Å之间,表明其为化学吸附。这些发现证实了TGDBTSC作为一种高效、耐用、热稳定的酸处理钢腐蚀缓蚀剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信