Effect of Multi-Axial Compression and Annealing on Texture Evolution and Plastic Anisotropy in Cu-Zn Alloys

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Taek-Kyun Jung, Je Pyo Hong, Chan-Ho Jeon, Young-Chul Park, Jong-Soo Kim, Mi-Sook Kim, Hyun-Jin Kim, Byeong Hong Jeong, Young-Chul Shin, Byungsu Shin, Soong-Keun Hyun, Yoon-Ok Park, Kwangtae Son, Chang-Hee Cho
{"title":"Effect of Multi-Axial Compression and Annealing on Texture Evolution and Plastic Anisotropy in Cu-Zn Alloys","authors":"Taek-Kyun Jung,&nbsp;Je Pyo Hong,&nbsp;Chan-Ho Jeon,&nbsp;Young-Chul Park,&nbsp;Jong-Soo Kim,&nbsp;Mi-Sook Kim,&nbsp;Hyun-Jin Kim,&nbsp;Byeong Hong Jeong,&nbsp;Young-Chul Shin,&nbsp;Byungsu Shin,&nbsp;Soong-Keun Hyun,&nbsp;Yoon-Ok Park,&nbsp;Kwangtae Son,&nbsp;Chang-Hee Cho","doi":"10.1007/s12540-025-01928-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the influence of Multi-Axial Compression (MAC) and annealing on texture evolution, grain boundary behavior, and plastic anisotropy in Cu-Zn alloys. The MAC process effectively reduces the formation of dominant copper- and brass-type textures by altering the strain path, promoting a more random texture distribution and reducing anisotropy. Texture Index (TI) values show that MAC significantly brings the alloy’s texture closer to ideal isotropy. During annealing, continuous recrystallization (RX) occurs, driven by organized dislocation structures with low dislocation arrangement indication <i>M*</i> values, which means disorderly arranged dislocations are first annihilated. Additionally, the formation of Σ3 coincident site lattice (CSL) boundaries plays a crucial role in suppressing grain growth, leading to a stable microstructure. The reduction in plastic anisotropy is confirmed by tensile test results, while conventional high electrical conductivity is maintained. The combined MAC and annealing processes demonstrate a promising method for improving the formability and retaining electrical performance of Cu-Zn alloys by controlling texture evolution and plastic anisotropy.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 10","pages":"3045 - 3061"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-025-01928-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the influence of Multi-Axial Compression (MAC) and annealing on texture evolution, grain boundary behavior, and plastic anisotropy in Cu-Zn alloys. The MAC process effectively reduces the formation of dominant copper- and brass-type textures by altering the strain path, promoting a more random texture distribution and reducing anisotropy. Texture Index (TI) values show that MAC significantly brings the alloy’s texture closer to ideal isotropy. During annealing, continuous recrystallization (RX) occurs, driven by organized dislocation structures with low dislocation arrangement indication M* values, which means disorderly arranged dislocations are first annihilated. Additionally, the formation of Σ3 coincident site lattice (CSL) boundaries plays a crucial role in suppressing grain growth, leading to a stable microstructure. The reduction in plastic anisotropy is confirmed by tensile test results, while conventional high electrical conductivity is maintained. The combined MAC and annealing processes demonstrate a promising method for improving the formability and retaining electrical performance of Cu-Zn alloys by controlling texture evolution and plastic anisotropy.

Graphical Abstract

Abstract Image

多轴压缩和退火对Cu-Zn合金织构演化和塑性各向异性的影响
本研究探讨了多轴压缩和退火对Cu-Zn合金织构演化、晶界行为和塑性各向异性的影响。MAC工艺通过改变应变路径,促进织构的随机分布和降低各向异性,有效地减少了主导铜和黄铜型织构的形成。织构指数(TI)值表明,MAC使合金织构更接近理想的各向同性。退火过程中,在位错排列指示M*值较低的有组织位错结构的驱动下,发生连续再结晶(RX),这意味着无序排列的位错首先湮灭。此外,Σ3重合点阵(CSL)边界的形成对抑制晶粒生长起着至关重要的作用,从而导致稳定的微观结构。拉伸试验结果证实了塑性各向异性的降低,同时保持了常规的高导电性。通过控制织构演化和塑性各向异性,结合MAC和退火工艺可以改善Cu-Zn合金的成形性和保持电性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信