Enhanced cycling stability of nickel-rich single-crystal LiNi0.83Co0.12Mn0.05O2 at high voltage via low-temperature epitaxial rock-salt interface engineering

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qinglu Fan, Xia Li, Yankui Cheng, Yanjie Hu, Wencheng Ma, Zehua Chen
{"title":"Enhanced cycling stability of nickel-rich single-crystal LiNi0.83Co0.12Mn0.05O2 at high voltage via low-temperature epitaxial rock-salt interface engineering","authors":"Qinglu Fan,&nbsp;Xia Li,&nbsp;Yankui Cheng,&nbsp;Yanjie Hu,&nbsp;Wencheng Ma,&nbsp;Zehua Chen","doi":"10.1007/s10853-025-11446-9","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the cycling stability of nickel-rich single-crystal LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> under high operating voltage while avoiding the impact on the main structure caused by conventional secondary calcination modification methods, a rock-salt phase interface layer (&lt; 10 nm) is constructed on the surface of LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> through low-temperature epitaxial self-growth without introducing heterogeneous atoms. In situ X-ray diffraction (XRD) analysis reveals the formation of a metastable transition phase during the deep delithiation process. Notably, the presence of the rock-salt phase layer remarkably suppresses the persistence of the metastable transition phase. Further investigation using differential capacitance curve (d<i>Q</i>/d<i>V</i>) demonstrates that suppressing this metastable phase improves the reversibility of the H2–H3 phase transition, thus facilitating long-term cycling stability of the modified sample at 4.5 V. This work presents a novel and effective interface reconstruction approach for the modification of single-crystal nickel-rich cathodes.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 37","pages":"17205 - 17214"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11446-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the cycling stability of nickel-rich single-crystal LiNi0.83Co0.12Mn0.05O2 under high operating voltage while avoiding the impact on the main structure caused by conventional secondary calcination modification methods, a rock-salt phase interface layer (< 10 nm) is constructed on the surface of LiNi0.83Co0.12Mn0.05O2 through low-temperature epitaxial self-growth without introducing heterogeneous atoms. In situ X-ray diffraction (XRD) analysis reveals the formation of a metastable transition phase during the deep delithiation process. Notably, the presence of the rock-salt phase layer remarkably suppresses the persistence of the metastable transition phase. Further investigation using differential capacitance curve (dQ/dV) demonstrates that suppressing this metastable phase improves the reversibility of the H2–H3 phase transition, thus facilitating long-term cycling stability of the modified sample at 4.5 V. This work presents a novel and effective interface reconstruction approach for the modification of single-crystal nickel-rich cathodes.

Graphical Abstract

低温外延岩盐界面工程增强富镍单晶LiNi0.83Co0.12Mn0.05O2在高压下的循环稳定性
为了提高LiNi0.83Co0.12Mn0.05O2在高工作电压下的循环稳定性,同时避免常规二次煅烧改性方法对主体结构的影响,在LiNi0.83Co0.12Mn0.05O2表面通过低温外延自生长构建了岩盐相界面层(< 10 nm),而不引入非均相原子。原位x射线衍射(XRD)分析揭示了深度剥蚀过程中亚稳过渡相的形成。值得注意的是,岩盐相层的存在显著地抑制了亚稳过渡相的持续存在。利用差分电容曲线(dQ/dV)进一步研究表明,抑制该亚稳相提高了H2-H3相变的可逆性,从而促进了修饰样品在4.5 V下的长期循环稳定性。本文提出了一种新的、有效的界面重建方法来修饰单晶富镍阴极。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信