Akshatha Chandrashekar, Madhushree Hegde, Siya Shetty, B. Karthik Reddy, Jineesh Ayippadath Gopi, Eswaraiah Varrla, T. Niranjana Prabhu
{"title":"Synergistic enhancement in thermal conductivity of RTV silicone rubber via non-covalently surface-modified graphene and MWCNT hybrid fillers","authors":"Akshatha Chandrashekar, Madhushree Hegde, Siya Shetty, B. Karthik Reddy, Jineesh Ayippadath Gopi, Eswaraiah Varrla, T. Niranjana Prabhu","doi":"10.1007/s10853-025-11474-5","DOIUrl":null,"url":null,"abstract":"<div><p>Effective thermal management is critical for advanced electronic devices, yet conventional polymer-based thermal interface materials (TIMs) often exhibit low thermal conductivity, poor filler dispersion, and high interfacial resistance. This study addresses these limitations by enhancing filler–matrix interactions and exploiting synergistic effects between dual-dimensional carbon nanofillers. Graphene (GPs) and multiwalled carbon nanotubes (MWCNTs) were non-covalently surface modified using phenyl glycidyl ether (PGE) via ultrasonication in THF, improving dispersion and compatibility with room temperature vulcanizing silicone rubber (RTV SR). The surface-functionalized fillers (PGE@GP, PGE@MWCNT) were characterized using FTIR, Raman spectroscopy, FESEM, and TGA to confirm successful modification. Composite films were fabricated by incorporating PGE-modified fillers into RTV SR at three different hybrid ratios (PGE@GP:PGE@MWCNT = 9:1, 8:2, and 7:3) with a total filler content of 10 wt%. The composite with a 9:1 ratio achieved the highest thermal conductivity of 0.459 ± 0.001 Wm<sup>−1</sup> K<sup>−1</sup>, representing a 129.5% enhancement over pure RTV SR. The observed 48.06% synergistic improvement highlights the effectiveness of combining dual-dimensional fillers. Additionally, the composite retained electrical insulation, a critical property for TIM applications. Application tests using a 1 W LED bulb demonstrated the composite’s ability to dissipate heat efficiently, confirming its potential as a high performance, electrically insulating thermal interface material for modern electronic systems.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 37","pages":"16899 - 16920"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11474-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective thermal management is critical for advanced electronic devices, yet conventional polymer-based thermal interface materials (TIMs) often exhibit low thermal conductivity, poor filler dispersion, and high interfacial resistance. This study addresses these limitations by enhancing filler–matrix interactions and exploiting synergistic effects between dual-dimensional carbon nanofillers. Graphene (GPs) and multiwalled carbon nanotubes (MWCNTs) were non-covalently surface modified using phenyl glycidyl ether (PGE) via ultrasonication in THF, improving dispersion and compatibility with room temperature vulcanizing silicone rubber (RTV SR). The surface-functionalized fillers (PGE@GP, PGE@MWCNT) were characterized using FTIR, Raman spectroscopy, FESEM, and TGA to confirm successful modification. Composite films were fabricated by incorporating PGE-modified fillers into RTV SR at three different hybrid ratios (PGE@GP:PGE@MWCNT = 9:1, 8:2, and 7:3) with a total filler content of 10 wt%. The composite with a 9:1 ratio achieved the highest thermal conductivity of 0.459 ± 0.001 Wm−1 K−1, representing a 129.5% enhancement over pure RTV SR. The observed 48.06% synergistic improvement highlights the effectiveness of combining dual-dimensional fillers. Additionally, the composite retained electrical insulation, a critical property for TIM applications. Application tests using a 1 W LED bulb demonstrated the composite’s ability to dissipate heat efficiently, confirming its potential as a high performance, electrically insulating thermal interface material for modern electronic systems.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.