The Synergistic Effect of CdO Nanoclusters and Cu-Exchanged MOR Zeolites Enhances Electrocatalytic CO2 Reduction

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Sankuan Chen, , , Nana Zhou, , , Yurong Yin, , , Dongyuan Yang*, , , Chengyi Dai*, , and , Xiaoxun Ma*, 
{"title":"The Synergistic Effect of CdO Nanoclusters and Cu-Exchanged MOR Zeolites Enhances Electrocatalytic CO2 Reduction","authors":"Sankuan Chen,&nbsp;, ,&nbsp;Nana Zhou,&nbsp;, ,&nbsp;Yurong Yin,&nbsp;, ,&nbsp;Dongyuan Yang*,&nbsp;, ,&nbsp;Chengyi Dai*,&nbsp;, and ,&nbsp;Xiaoxun Ma*,&nbsp;","doi":"10.1021/acs.energyfuels.5c03432","DOIUrl":null,"url":null,"abstract":"<p >Efficient electrochemical CO<sub>2</sub> reduction is achieved using a rationally designed CdO@CuMOR zeolite catalyst. By combining copper ion-exchange with cadmium oxide nanocluster encapsulation, we simultaneously enhance charge transfer properties and regulate intermediate binding. The modified catalyst exhibits superior CO selectivity, achieving high Faradaic efficiency for CO production across a broad potential window. The copper-modified zeolite framework facilitates electron conduction while suppressing competing reactions, and the confined CdO components optimize the binding strength of key intermediates *CO. This synergistic design enables effective CO<sub>2</sub> activation and conversion while mitigating common poisoning effects. The results highlight how zeolite hosts can be engineered to create tailored microenvironments for metal oxide catalysts, controlling both electronic and spatial factors that govern electrochemical performance. This approach provides a general strategy for developing selective hybrid catalysts for CO<sub>2</sub> conversion through precise manipulation of active site environments.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 38","pages":"18577–18585"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c03432","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient electrochemical CO2 reduction is achieved using a rationally designed CdO@CuMOR zeolite catalyst. By combining copper ion-exchange with cadmium oxide nanocluster encapsulation, we simultaneously enhance charge transfer properties and regulate intermediate binding. The modified catalyst exhibits superior CO selectivity, achieving high Faradaic efficiency for CO production across a broad potential window. The copper-modified zeolite framework facilitates electron conduction while suppressing competing reactions, and the confined CdO components optimize the binding strength of key intermediates *CO. This synergistic design enables effective CO2 activation and conversion while mitigating common poisoning effects. The results highlight how zeolite hosts can be engineered to create tailored microenvironments for metal oxide catalysts, controlling both electronic and spatial factors that govern electrochemical performance. This approach provides a general strategy for developing selective hybrid catalysts for CO2 conversion through precise manipulation of active site environments.

Abstract Image

CdO纳米团簇与cu交换MOR沸石的协同作用增强了电催化CO2还原效果
采用合理设计的CdO@CuMOR沸石催化剂,实现了高效的电化学CO2还原。通过将铜离子交换与氧化镉纳米团簇封装相结合,我们在增强电荷转移性能的同时调节了中间结合。改性后的催化剂表现出优异的CO选择性,在广泛的电位窗口内实现了CO生产的高法拉第效率。铜修饰的沸石骨架有利于电子传导,同时抑制竞争反应,受限的CdO组分优化了关键中间体*CO的结合强度。这种协同设计能够有效地激活和转换二氧化碳,同时减轻常见的中毒效应。研究结果强调了如何设计沸石载体,为金属氧化物催化剂创造定制的微环境,控制控制电化学性能的电子和空间因素。这种方法为通过精确操纵活性位点环境来开发CO2转化的选择性混合催化剂提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信