{"title":"Demography of lemmings in response to changing snow conditions in the High Arctic","authors":"Mathilde Poirier, Gilles Gauthier, Florent Dominé, Dominique Fauteux","doi":"10.1002/ecy.70216","DOIUrl":null,"url":null,"abstract":"<p>Changing snow conditions due to climate warming may negatively affect the northern fauna that depend on it for their winter survival. To avoid cold temperatures, Arctic lemmings seek refuge in areas with deep snowpack where they build nests in which they can reproduce if conditions are favorable. The presence of a soft depth hoar layer ensures efficient digging and facilitates lemming movement in the snow, but such favorable conditions are highly dependent on weather conditions at the beginning of winter. Using a 17-year time series, we assessed the impact of snow conditions and specific weather events on lemming winter reproduction and population growth on Bylot Island in the Canadian High Arctic, a site characterized by a cold and dry Arctic climate. We focused on snow onset date, snow depth, and weather events leading to a hardening of the snow basal layer (i.e., rain-on-snow, melt-freeze, and freezing rain) at the beginning of winter. We also examined possible differences between two lemming species, the brown lemming (<i>Lemmus trimucronatus</i>) and the collared lemming (<i>Dicrostonyx groenlandicus</i>), the latter presenting unique morphological adaptations to snowy environments. We found that the intensity of winter reproduction of both species was negatively related to the intensity of rain-on-snow, melt-freeze, and freezing rain events. Winter population growth was also negatively related to the intensity of rain-on-snow and melt-freeze events in brown lemmings but not in collared lemmings. Contrary to our expectation, no relationship was found between lemming demography and snow onset date or snow depth. We found a higher reproductive rate in collared than in brown lemmings, suggesting a more effective strategy to save energy for winter reproduction in the former species. Overall, this study shows that even moderate weather events, in comparison with other Nordic sites, can impact lemming population growth in winter, likely by reducing their capacity to reproduce due to a hardening of the snowpack. The expected increase in such weather events with climate change may threaten lemming populations even in the High Arctic, as well as predators that depend upon them.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.70216","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changing snow conditions due to climate warming may negatively affect the northern fauna that depend on it for their winter survival. To avoid cold temperatures, Arctic lemmings seek refuge in areas with deep snowpack where they build nests in which they can reproduce if conditions are favorable. The presence of a soft depth hoar layer ensures efficient digging and facilitates lemming movement in the snow, but such favorable conditions are highly dependent on weather conditions at the beginning of winter. Using a 17-year time series, we assessed the impact of snow conditions and specific weather events on lemming winter reproduction and population growth on Bylot Island in the Canadian High Arctic, a site characterized by a cold and dry Arctic climate. We focused on snow onset date, snow depth, and weather events leading to a hardening of the snow basal layer (i.e., rain-on-snow, melt-freeze, and freezing rain) at the beginning of winter. We also examined possible differences between two lemming species, the brown lemming (Lemmus trimucronatus) and the collared lemming (Dicrostonyx groenlandicus), the latter presenting unique morphological adaptations to snowy environments. We found that the intensity of winter reproduction of both species was negatively related to the intensity of rain-on-snow, melt-freeze, and freezing rain events. Winter population growth was also negatively related to the intensity of rain-on-snow and melt-freeze events in brown lemmings but not in collared lemmings. Contrary to our expectation, no relationship was found between lemming demography and snow onset date or snow depth. We found a higher reproductive rate in collared than in brown lemmings, suggesting a more effective strategy to save energy for winter reproduction in the former species. Overall, this study shows that even moderate weather events, in comparison with other Nordic sites, can impact lemming population growth in winter, likely by reducing their capacity to reproduce due to a hardening of the snowpack. The expected increase in such weather events with climate change may threaten lemming populations even in the High Arctic, as well as predators that depend upon them.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.