Liu Yang, Xiaotong Zhang, Hanchen Wang, Jinlong Wang, Yiming Sun, Lei Liu, Zhiyuan Zhao, Yumin Yang, Dahai Wei, Dong Pan, Jianhua Zhao, Jian Shen, Weisheng Zhao, Haichang Lu, Haiming Yu, Wenbin Wang, Na Lei
{"title":"Large interfacial Dzyaloshinskii–Moriya interaction of epitaxial perovskite La0.7Sr0.3MnO3 films","authors":"Liu Yang, Xiaotong Zhang, Hanchen Wang, Jinlong Wang, Yiming Sun, Lei Liu, Zhiyuan Zhao, Yumin Yang, Dahai Wei, Dong Pan, Jianhua Zhao, Jian Shen, Weisheng Zhao, Haichang Lu, Haiming Yu, Wenbin Wang, Na Lei","doi":"10.1063/5.0268251","DOIUrl":null,"url":null,"abstract":"The Dzyaloshinskii–Moriya interaction (DMI) is pivotal in stabilizing topological spin textures, a critical aspect of the rapidly advancing field of oxide-based spintronics. While skyrmions and the topological Hall effect have been widely studied in oxide films, experimental verification of interfacial DMI and its underlying mechanisms in oxide interfaces has remained largely unexplored. In this study, we report a significantly large interfacial DMI in La0.7Sr0.3MnO3 (LSMO) films grown on NdGaO3 substrates, with a DMI coefficient of 1.96 pJ/m—one to two orders of magnitude higher than previously observed in oxide systems. Our experiments, coupled with first-principles calculations, reveal that enhanced spin–orbit coupling at the LSMO/NdGaO3 interface, driven by a synergy between the 6s electrons of Nd and the 4f electrons, is the key to this large DMI. This breakthrough opens new avenues for controlling chiral spintronics in oxide-based materials, laying the groundwork for next-generation spintronic and magnonic devices.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"44 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0268251","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Dzyaloshinskii–Moriya interaction (DMI) is pivotal in stabilizing topological spin textures, a critical aspect of the rapidly advancing field of oxide-based spintronics. While skyrmions and the topological Hall effect have been widely studied in oxide films, experimental verification of interfacial DMI and its underlying mechanisms in oxide interfaces has remained largely unexplored. In this study, we report a significantly large interfacial DMI in La0.7Sr0.3MnO3 (LSMO) films grown on NdGaO3 substrates, with a DMI coefficient of 1.96 pJ/m—one to two orders of magnitude higher than previously observed in oxide systems. Our experiments, coupled with first-principles calculations, reveal that enhanced spin–orbit coupling at the LSMO/NdGaO3 interface, driven by a synergy between the 6s electrons of Nd and the 4f electrons, is the key to this large DMI. This breakthrough opens new avenues for controlling chiral spintronics in oxide-based materials, laying the groundwork for next-generation spintronic and magnonic devices.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.