A Base-Assisted One-Pot Cyclization and Potassium Association Route to a Very Thermally Stable Bistetrazole Salt

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Parul Saini, Jatinder Singh, Richard J. Staples, Jean'ne M. Shreeve
{"title":"A Base-Assisted One-Pot Cyclization and Potassium Association Route to a Very Thermally Stable Bistetrazole Salt","authors":"Parul Saini, Jatinder Singh, Richard J. Staples, Jean'ne M. Shreeve","doi":"10.1039/d5ta05027h","DOIUrl":null,"url":null,"abstract":"Pursuing next-generation energetic materials has prompted researchers to investigate novel combinations of structural and energetic properties. In this study, we constructed a coordination-driven bisnitroimino-tetrazole scaffold, dipotassium 1,1′-methylene bis(1-nitroimino tetrazolate) (K₂MBNIT), which exhibits ultra-high thermal stability, remarkably surpassing the thermal performance of previously reported bistetrazole-based potassium salts such as K₂DNABT (potassium 4,5-bis(dinitromethyl)furoxannate) and K₂ABNAT (5,5′-azobis(1-nitroimino tetrazolate). The synthetic route to K₂MBNIT features two key transformations: an initial tetrazole ring opening and a subsequent ring-closing reaction to form the final bistetrazole structure. In the cyclization step, K₂MBNIT is selectively obtained from the unprecedently formed precursor, 1,1′-methylene bis(1-azido-1-nitroiminomethylene) (4). K₂MBNIT exhibits a decomposition temperature comparable to heat-resistant energetic materials and sensitivity akin to primary explosives, presenting a unique combination of desirable properties for modern applications such as hypersonic weapons, space missions, and deep-well drilling. The straightforward synthetic methodology, methylene-assisted structural stabilization, and superior heat resistance collectively highlight K₂MBNIT as a promising candidate for a next-generation energetic material.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"73 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta05027h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pursuing next-generation energetic materials has prompted researchers to investigate novel combinations of structural and energetic properties. In this study, we constructed a coordination-driven bisnitroimino-tetrazole scaffold, dipotassium 1,1′-methylene bis(1-nitroimino tetrazolate) (K₂MBNIT), which exhibits ultra-high thermal stability, remarkably surpassing the thermal performance of previously reported bistetrazole-based potassium salts such as K₂DNABT (potassium 4,5-bis(dinitromethyl)furoxannate) and K₂ABNAT (5,5′-azobis(1-nitroimino tetrazolate). The synthetic route to K₂MBNIT features two key transformations: an initial tetrazole ring opening and a subsequent ring-closing reaction to form the final bistetrazole structure. In the cyclization step, K₂MBNIT is selectively obtained from the unprecedently formed precursor, 1,1′-methylene bis(1-azido-1-nitroiminomethylene) (4). K₂MBNIT exhibits a decomposition temperature comparable to heat-resistant energetic materials and sensitivity akin to primary explosives, presenting a unique combination of desirable properties for modern applications such as hypersonic weapons, space missions, and deep-well drilling. The straightforward synthetic methodology, methylene-assisted structural stabilization, and superior heat resistance collectively highlight K₂MBNIT as a promising candidate for a next-generation energetic material.
一种碱辅助一锅环化和钾缔合制得非常热稳定的双四唑盐
追求下一代高能材料促使研究人员研究结构和能量特性的新组合。在这项研究中,我们构建了一个配位驱动的双硝基亚硝基四氮唑支架,即1,1 ' -亚甲基双(1-硝基亚硝基四氮唑)二钾(K₂MBNIT),它具有超高的热稳定性,显著超过了先前报道的基于双四氮唑的钾盐,如K₂DNABT(钾4,5-二(二硝基甲基)呋喃嘧啶)和K₂ABNAT(5,5 ' -偶氮基(1-硝基四氮唑))的热性能。K₂MBNIT的合成路线具有两个关键的转变:初始的四唑开环反应和随后的闭环反应,形成最终的双四唑结构。在环化步骤中,K₂MBNIT选择性地从前所未有形成的前驱体1,1′-亚甲基双(1-叠氮-1-硝基亚胺亚甲基)中获得(4)。K₂MBNIT具有与耐热高能材料相当的分解温度和类似于初级炸药的灵敏度,为高超音速武器、太空任务和深井钻井等现代应用提供了独特的理想性能组合。直接的合成方法,亚甲基辅助结构稳定性和优越的耐热性共同突出了K₂MBNIT作为下一代高能材料的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信