Engineering Oxygen-Vacancy Traps in Polymer-Based Composite Dielectrics for High-Performance Capacitive Energy Storage at 200 °C

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenqi Zhang, Sidi Fan, Rui Yang, Fengkai Wang, Xiao Yang, Fangcheng Lv, Xiang Yu
{"title":"Engineering Oxygen-Vacancy Traps in Polymer-Based Composite Dielectrics for High-Performance Capacitive Energy Storage at 200 °C","authors":"Wenqi Zhang, Sidi Fan, Rui Yang, Fengkai Wang, Xiao Yang, Fangcheng Lv, Xiang Yu","doi":"10.1002/adfm.202519650","DOIUrl":null,"url":null,"abstract":"Leakage current at elevated temperature remains a critical challenge in polymer dielectrics for high-temperature capacitive energy storage. Introducing interfacial traps is an effective strategy to suppress leakage current, nevertheless, heavily relying on high doping ratios to achieve sufficient interfacial area. Herein, poly(m-phenylene isophthalamide) (PMIA)-based dielectric films reinforced with P25 TiO<sub>2</sub>, a mixed-phase filler that generates abundant oxygen vacancies at inter-phase boundaries, is reported. These oxygen vacancies introduce additional energy states in the forbidden band of P25 TiO<sub>2</sub>, capable of generating multiply-trapped sites even at low doping levels. At an ultra-low doping ratio of 0.3 wt.%, leakage current of composite films is reduced by two orders of magnitude, contributing to an enhanced breakdown strength of 611.2 MV m<sup>−1</sup> at 200 °C. This attains a maximum discharge energy density of 10.12 J cm<sup>−3</sup> while retaining 6.86 J cm<sup>−3</sup> at a charge–discharge efficiency over 90%. The oxygen-vacancy traps and ultra-fast charge transfer dynamics are experimentally and theoretically investigated using photoluminescence (PL), time-resolved photoluminescence (TRPL), femtosecond transient absorption spectroscopy (fs-TAS), and density functional theory (DFT) calculations. The work highlights the significance of engineering oxygen-vacancy traps for high-temperature capacitive energy storage, with P25 TiO<sub>2</sub> being a promising platform for future applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"40 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202519650","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Leakage current at elevated temperature remains a critical challenge in polymer dielectrics for high-temperature capacitive energy storage. Introducing interfacial traps is an effective strategy to suppress leakage current, nevertheless, heavily relying on high doping ratios to achieve sufficient interfacial area. Herein, poly(m-phenylene isophthalamide) (PMIA)-based dielectric films reinforced with P25 TiO2, a mixed-phase filler that generates abundant oxygen vacancies at inter-phase boundaries, is reported. These oxygen vacancies introduce additional energy states in the forbidden band of P25 TiO2, capable of generating multiply-trapped sites even at low doping levels. At an ultra-low doping ratio of 0.3 wt.%, leakage current of composite films is reduced by two orders of magnitude, contributing to an enhanced breakdown strength of 611.2 MV m−1 at 200 °C. This attains a maximum discharge energy density of 10.12 J cm−3 while retaining 6.86 J cm−3 at a charge–discharge efficiency over 90%. The oxygen-vacancy traps and ultra-fast charge transfer dynamics are experimentally and theoretically investigated using photoluminescence (PL), time-resolved photoluminescence (TRPL), femtosecond transient absorption spectroscopy (fs-TAS), and density functional theory (DFT) calculations. The work highlights the significance of engineering oxygen-vacancy traps for high-temperature capacitive energy storage, with P25 TiO2 being a promising platform for future applications.

Abstract Image

在200°C下用于高性能电容储能的聚合物基复合电介质中的工程氧空位阱
高温下的泄漏电流是聚合物介质高温电容储能的一个关键挑战。引入界面陷阱是抑制泄漏电流的有效策略,然而,严重依赖于高掺杂比来获得足够的界面面积。本文报道了用P25 TiO2增强聚间苯二苯酰胺(PMIA)基介电薄膜,P25 TiO2是一种混合相填料,在相间边界产生丰富的氧空位。这些氧空位在P25 TiO2的禁带中引入了额外的能态,即使在低掺杂水平下也能产生多阱位。在0.3 wt.%的超低掺杂率下,复合薄膜的漏电流降低了两个数量级,在200℃时击穿强度提高到611.2 MV m−1。在充放电效率超过90%的情况下,最大放电能量密度为10.12 J cm−3,同时保持6.86 J cm−3。利用光致发光(PL)、时间分辨光致发光(TRPL)、飞秒瞬态吸收光谱(fs-TAS)和密度泛函理论(DFT)对氧空位阱和超快电荷转移动力学进行了实验和理论研究。这项工作强调了工程氧空位陷阱对高温电容储能的重要性,P25 TiO2是未来应用的一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信