Machine Learning-Empowered Plastic-Derived Porous Carbons for High-Performance CO2 Capture

IF 14.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuangjun Li, Yan Xie, Shuai Deng, Xiangzhou Yuan
{"title":"Machine Learning-Empowered Plastic-Derived Porous Carbons for High-Performance CO2 Capture","authors":"Shuangjun Li, Yan Xie, Shuai Deng, Xiangzhou Yuan","doi":"10.1021/accountsmr.5c00185","DOIUrl":null,"url":null,"abstract":"Plastic pollution and climate change are interconnected global environmental challenges. Conventional methods (incineration and landfills) exacerbate these issues by emitting greenhouse gases and releasing micro/nanoplastics. To simultaneously address these two critical environmental issues, we upcycle plastic waste into porous carbon materials, enabling high-performance postcombustion CO<sub>2</sub> capture in a transformative and practical manner. This strategy tackles environmental pollution, aligns with circular economy principles, and supports several of UN Sustainable Development Goals (SDGs). We conduct systematic studies, including experimental validations, numerical simulations, and machine learning (ML)-empowered optimizations, to provide detailed guidelines for upcycling plastic waste into porous carbons with high-performance CO<sub>2</sub> capture.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.5c00185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic pollution and climate change are interconnected global environmental challenges. Conventional methods (incineration and landfills) exacerbate these issues by emitting greenhouse gases and releasing micro/nanoplastics. To simultaneously address these two critical environmental issues, we upcycle plastic waste into porous carbon materials, enabling high-performance postcombustion CO2 capture in a transformative and practical manner. This strategy tackles environmental pollution, aligns with circular economy principles, and supports several of UN Sustainable Development Goals (SDGs). We conduct systematic studies, including experimental validations, numerical simulations, and machine learning (ML)-empowered optimizations, to provide detailed guidelines for upcycling plastic waste into porous carbons with high-performance CO2 capture.

Abstract Image

基于机器学习的塑料衍生多孔碳用于高性能二氧化碳捕获
塑料污染和气候变化是相互关联的全球环境挑战。传统的方法(焚烧和填埋)通过排放温室气体和释放微/纳米塑料加剧了这些问题。为了同时解决这两个关键的环境问题,我们将塑料废物升级为多孔碳材料,以一种变革性和实用的方式实现高性能的燃烧后二氧化碳捕获。这一战略解决了环境污染问题,符合循环经济原则,并支持多项联合国可持续发展目标(sdg)。我们进行了系统的研究,包括实验验证、数值模拟和机器学习(ML)优化,为将塑料废物升级为具有高性能二氧化碳捕集功能的多孔碳提供详细的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信