Mechanistic insights into metal-organic framework thin film growth from microkinetic analysis of in situ X-ray scattering data

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-09-24 DOI:10.1016/j.matt.2025.102430
Prem K. Reddy, Prince Verma, Ankit Dhakal, Rajan R. Bhawnani, Meagan Phister, Anish V. Dighe, Kevin H. Stone, Gaurav Giri, Meenesh R. Singh
{"title":"Mechanistic insights into metal-organic framework thin film growth from microkinetic analysis of in situ X-ray scattering data","authors":"Prem K. Reddy, Prince Verma, Ankit Dhakal, Rajan R. Bhawnani, Meagan Phister, Anish V. Dighe, Kevin H. Stone, Gaurav Giri, Meenesh R. Singh","doi":"10.1016/j.matt.2025.102430","DOIUrl":null,"url":null,"abstract":"Metal-organic framework (MOF) thin films offer exceptional properties for diverse applications, yet the mechanisms underlying MOF crystallization are not fully understood. Knowledge gaps remain regarding the nucleation and growth mechanisms of these highly porous, crystalline materials under dynamic evaporative conditions. Here, an <em>in situ</em> grazing incidence wide-angle X-ray scattering (GIWAXS) combined with a microkinetic model is used to probe the dynamic growth of MOF films. We show that while most high-order oligomers are produced in the solution phase, the key parameters that control thin-film growth are autocatalytic synthesis of secondary building units (SBUs) followed by physisorption on silicon wafer substrate, exponential growth due to evaporation-driven step growth, and transition to the stationary phase due to mass-transfer-limited growth. Importantly, this study demonstrates the applicability of this microkinetic modeling framework to predict film properties across a range of temperatures and reactant concentrations, allowing for rational design of MOF thin films.","PeriodicalId":388,"journal":{"name":"Matter","volume":"53 1","pages":""},"PeriodicalIF":17.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102430","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic framework (MOF) thin films offer exceptional properties for diverse applications, yet the mechanisms underlying MOF crystallization are not fully understood. Knowledge gaps remain regarding the nucleation and growth mechanisms of these highly porous, crystalline materials under dynamic evaporative conditions. Here, an in situ grazing incidence wide-angle X-ray scattering (GIWAXS) combined with a microkinetic model is used to probe the dynamic growth of MOF films. We show that while most high-order oligomers are produced in the solution phase, the key parameters that control thin-film growth are autocatalytic synthesis of secondary building units (SBUs) followed by physisorption on silicon wafer substrate, exponential growth due to evaporation-driven step growth, and transition to the stationary phase due to mass-transfer-limited growth. Importantly, this study demonstrates the applicability of this microkinetic modeling framework to predict film properties across a range of temperatures and reactant concentrations, allowing for rational design of MOF thin films.

Abstract Image

从原位x射线散射数据的微动力学分析对金属有机骨架薄膜生长的机理见解
金属有机框架(MOF)薄膜为各种应用提供了卓越的性能,但MOF结晶的机制尚不完全清楚。关于这些高多孔晶体材料在动态蒸发条件下的成核和生长机制的知识差距仍然存在。本文采用原位掠入射广角x射线散射(GIWAXS)技术结合微动力学模型来研究MOF薄膜的动态生长。我们发现,虽然大多数高阶低聚物是在溶液阶段产生的,但控制薄膜生长的关键参数是二级构建单元(SBUs)的自催化合成,随后在硅片衬底上物理吸附,蒸发驱动的阶梯生长导致的指数增长,以及由于传质限制生长而过渡到固定相。重要的是,这项研究证明了这种微动力学建模框架在不同温度和反应物浓度下预测薄膜性能的适用性,从而允许合理设计MOF薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信