Crossover From Branched Flow to Anderson Localization in Time-Fluctuating Random Potentials

IF 10 1区 物理与天体物理 Q1 OPTICS
Jianwei Qin, Yan Liu, Fangwei Ye
{"title":"Crossover From Branched Flow to Anderson Localization in Time-Fluctuating Random Potentials","authors":"Jianwei Qin, Yan Liu, Fangwei Ye","doi":"10.1002/lpor.202501144","DOIUrl":null,"url":null,"abstract":"When a wavepacket propagates in a disordered system, two distinct phenomena, Anderson localization and branched flow, are known to occur. Anderson localization happens when the wavepacket becomes confined in a stationary random potential as it evolves, while branched flow occurs as the random potential fluctuates smoothly and slowly along the evolving dimension. In this study, the transition from branched flow to Anderson localization is investigated by progressively increasing the temporal correlation length of the random potential (denoted by <span data-altimg=\"/cms/asset/161efb67-a48f-4875-aaf8-e4cd92e25fe8/lpor70427-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0001.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0001\" display=\"inline\" location=\"graphic/lpor70427-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) in the evolving dimension. The wave dynamics is found initially showing hyper-diffusion due to enhanced branched flow, but with a further increase in <span data-altimg=\"/cms/asset/0fde9436-bbff-4678-b437-e5e62439b15d/lpor70427-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0002.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0002\" display=\"inline\" location=\"graphic/lpor70427-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, a coherence-driven localization effect is triggered. This effect reduces diffusion and ultimately leads to Anderson localization. Two critical temporal correlation lengths <span data-altimg=\"/cms/asset/9d0fd3f4-c696-425c-9efd-ce6012a8aeee/lpor70427-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0003.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0003\" display=\"inline\" location=\"graphic/lpor70427-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container> are identified, at which the maximum diffusion rate is achieved, and at which Anderson localization dominates the wave evolution, respectively. A theoretical model is proposed that takes into account the interaction between wave coherence and the wave diffusion rate to predict these two critical correlation lengths <span data-altimg=\"/cms/asset/8e733212-4b83-420a-9c04-106986e8ef5a/lpor70427-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0004.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0004\" display=\"inline\" location=\"graphic/lpor70427-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. The experimental observation of the transition from branched flow to Anderson localization with varying <span data-altimg=\"/cms/asset/ec17b82d-8fc3-48f1-b12e-2c9c0dcacf24/lpor70427-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0005.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0005\" display=\"inline\" location=\"graphic/lpor70427-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is demonstrated in the light propagation in photorefractive SBN:61 with a random potential introduced in a controlled manner.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"35 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501144","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

When a wavepacket propagates in a disordered system, two distinct phenomena, Anderson localization and branched flow, are known to occur. Anderson localization happens when the wavepacket becomes confined in a stationary random potential as it evolves, while branched flow occurs as the random potential fluctuates smoothly and slowly along the evolving dimension. In this study, the transition from branched flow to Anderson localization is investigated by progressively increasing the temporal correlation length of the random potential (denoted by τ$\tau$) in the evolving dimension. The wave dynamics is found initially showing hyper-diffusion due to enhanced branched flow, but with a further increase in τ$\tau$, a coherence-driven localization effect is triggered. This effect reduces diffusion and ultimately leads to Anderson localization. Two critical temporal correlation lengths τ$\tau$ are identified, at which the maximum diffusion rate is achieved, and at which Anderson localization dominates the wave evolution, respectively. A theoretical model is proposed that takes into account the interaction between wave coherence and the wave diffusion rate to predict these two critical correlation lengths τ$\tau$. The experimental observation of the transition from branched flow to Anderson localization with varying τ$\tau$ is demonstrated in the light propagation in photorefractive SBN:61 with a random potential introduced in a controlled manner.

Abstract Image

时变随机势中从支路流到安德森局部化的交叉
当波包在无序系统中传播时,已知会发生两种不同的现象,即安德森局域化和分支流。当波包在演化过程中被限制在一个平稳的随机电位中时,就会发生安德森局域化;而当随机电位沿演化维度平稳缓慢波动时,就会发生分支流动。在本研究中,通过逐步增加随机电位(用τ$\tau$表示)在演化维度上的时间相关长度来研究从分支流到安德森局域化的转变。发现波动动力学最初由于分支流动增强而表现出超扩散,但随着τ$\tau$的进一步增加,引发了相干驱动的局部化效应。这种效应减少了扩散,最终导致安德森局部化。确定了两个临界时间相关长度τ$\tau$,分别达到最大扩散速率和安德森局域化主导波演化。提出了一个考虑波相干性和波扩散率相互作用的理论模型来预测这两个临界相关长度τ$\tau$。在可控引入随机电位的光折变SBN:61中,实验观察到随着τ$\tau$的变化,从分支流到安德森局域化的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信