{"title":"Crossover From Branched Flow to Anderson Localization in Time-Fluctuating Random Potentials","authors":"Jianwei Qin, Yan Liu, Fangwei Ye","doi":"10.1002/lpor.202501144","DOIUrl":null,"url":null,"abstract":"When a wavepacket propagates in a disordered system, two distinct phenomena, Anderson localization and branched flow, are known to occur. Anderson localization happens when the wavepacket becomes confined in a stationary random potential as it evolves, while branched flow occurs as the random potential fluctuates smoothly and slowly along the evolving dimension. In this study, the transition from branched flow to Anderson localization is investigated by progressively increasing the temporal correlation length of the random potential (denoted by <span data-altimg=\"/cms/asset/161efb67-a48f-4875-aaf8-e4cd92e25fe8/lpor70427-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0001.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0001\" display=\"inline\" location=\"graphic/lpor70427-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) in the evolving dimension. The wave dynamics is found initially showing hyper-diffusion due to enhanced branched flow, but with a further increase in <span data-altimg=\"/cms/asset/0fde9436-bbff-4678-b437-e5e62439b15d/lpor70427-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0002.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0002\" display=\"inline\" location=\"graphic/lpor70427-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, a coherence-driven localization effect is triggered. This effect reduces diffusion and ultimately leads to Anderson localization. Two critical temporal correlation lengths <span data-altimg=\"/cms/asset/9d0fd3f4-c696-425c-9efd-ce6012a8aeee/lpor70427-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0003.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0003\" display=\"inline\" location=\"graphic/lpor70427-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container> are identified, at which the maximum diffusion rate is achieved, and at which Anderson localization dominates the wave evolution, respectively. A theoretical model is proposed that takes into account the interaction between wave coherence and the wave diffusion rate to predict these two critical correlation lengths <span data-altimg=\"/cms/asset/8e733212-4b83-420a-9c04-106986e8ef5a/lpor70427-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0004.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0004\" display=\"inline\" location=\"graphic/lpor70427-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. The experimental observation of the transition from branched flow to Anderson localization with varying <span data-altimg=\"/cms/asset/ec17b82d-8fc3-48f1-b12e-2c9c0dcacf24/lpor70427-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70427-math-0005.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70427:lpor70427-math-0005\" display=\"inline\" location=\"graphic/lpor70427-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"tau\" data-semantic-type=\"identifier\">τ</mi>$\\tau$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is demonstrated in the light propagation in photorefractive SBN:61 with a random potential introduced in a controlled manner.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"35 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501144","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
When a wavepacket propagates in a disordered system, two distinct phenomena, Anderson localization and branched flow, are known to occur. Anderson localization happens when the wavepacket becomes confined in a stationary random potential as it evolves, while branched flow occurs as the random potential fluctuates smoothly and slowly along the evolving dimension. In this study, the transition from branched flow to Anderson localization is investigated by progressively increasing the temporal correlation length of the random potential (denoted by ) in the evolving dimension. The wave dynamics is found initially showing hyper-diffusion due to enhanced branched flow, but with a further increase in , a coherence-driven localization effect is triggered. This effect reduces diffusion and ultimately leads to Anderson localization. Two critical temporal correlation lengths are identified, at which the maximum diffusion rate is achieved, and at which Anderson localization dominates the wave evolution, respectively. A theoretical model is proposed that takes into account the interaction between wave coherence and the wave diffusion rate to predict these two critical correlation lengths . The experimental observation of the transition from branched flow to Anderson localization with varying is demonstrated in the light propagation in photorefractive SBN:61 with a random potential introduced in a controlled manner.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.