Nan Zhang,Tianyi Hou,Gaoce Han,Yifei Yu,Henghui Xu,Yunhui Huang
{"title":"Smart batteries: materials, monitoring, and artificial intelligence.","authors":"Nan Zhang,Tianyi Hou,Gaoce Han,Yifei Yu,Henghui Xu,Yunhui Huang","doi":"10.1039/d5cs00609k","DOIUrl":null,"url":null,"abstract":"Addressing critical limitations of conventional lithium-ion batteries, including resource scarcity, safety risks, and environmental concerns, the advent of smart batteries represents a transformative leap in energy storage. This comprehensive review highlights their defining characteristics of stability, safety, sustainability, and sensibility (4S) by synergistically integrating responsive materials, high-precision sensing, and artificial intelligence (AI)-driven management. We critically examine recent breakthroughs in responsive materials capable of self-protection, self-healing, self-adaptation, self-adjusting, self-diagnosis, and self-charging across all battery components, including electrolytes, separators, electrodes, binders, and current collectors. Furthermore, we detail state-of-the-art sensing techniques for real-time safety monitoring and advanced AI algorithms for predictive lifetime management, offering unprecedented control over battery performance and safety. Finally, this review delineates critical challenges and outlines interdisciplinary future research directions, bridging materials science, advanced diagnostics, and predictive analytics. By enabling enhanced performance, safety, and environmental compatibility, smart batteries are poised to revolutionize energy storage technologies globally, driving sustainable energy transitions and unlocking new paradigms for intelligent power systems.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"16 1","pages":""},"PeriodicalIF":39.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cs00609k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing critical limitations of conventional lithium-ion batteries, including resource scarcity, safety risks, and environmental concerns, the advent of smart batteries represents a transformative leap in energy storage. This comprehensive review highlights their defining characteristics of stability, safety, sustainability, and sensibility (4S) by synergistically integrating responsive materials, high-precision sensing, and artificial intelligence (AI)-driven management. We critically examine recent breakthroughs in responsive materials capable of self-protection, self-healing, self-adaptation, self-adjusting, self-diagnosis, and self-charging across all battery components, including electrolytes, separators, electrodes, binders, and current collectors. Furthermore, we detail state-of-the-art sensing techniques for real-time safety monitoring and advanced AI algorithms for predictive lifetime management, offering unprecedented control over battery performance and safety. Finally, this review delineates critical challenges and outlines interdisciplinary future research directions, bridging materials science, advanced diagnostics, and predictive analytics. By enabling enhanced performance, safety, and environmental compatibility, smart batteries are poised to revolutionize energy storage technologies globally, driving sustainable energy transitions and unlocking new paradigms for intelligent power systems.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences