{"title":"Even-denominator fractional quantum Hall states with spontaneously broken rotational symmetry.","authors":"Chengyu Wang,Adbhut Gupta,Siddharth Singh,Chia-Tse Tai,Loren Pfeiffer,Kirk Baldwin,Roland Winkler,Mansour Shayegan","doi":"10.1088/1361-6633/ae0a7f","DOIUrl":null,"url":null,"abstract":"The interplay between the fractional quantum Hall effect and nematicity is intriguing as it links emerging topological order and spontaneous symmetry breaking. Anisotropic fractional quantum Hall states (FQHSs) have indeed been reported in GaAs quantum wells but only in tilted magnetic fields, where the in-plane field explicitly breaks the rotational symmetry. Here we report the observation of FQHSs with highly anisotropic longitudinal resistances in purely perpendicular magnetic fields at even-denominator Landau level fillings ν = 5/2 and 7/2 in ultrahigh-quality GaAs twodimensional hole systems. The coexistence of FQHSs and spontaneous symmetry breaking at half fillings signals the emergence of nematic FQHSs which also likely harbor non-Abelian quasiparticle excitations. By gate tuning the hole density, we observe a phase transition from an anisotropic, developing FQHS to an isotropic composite fermion Fermi sea at ν = 7/2. Our calculations suggest that the mixed orbital components in the partially occupied Landau level play a key role in the competition and interplay between topological and nematic orders.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"23 1","pages":""},"PeriodicalIF":20.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ae0a7f","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The interplay between the fractional quantum Hall effect and nematicity is intriguing as it links emerging topological order and spontaneous symmetry breaking. Anisotropic fractional quantum Hall states (FQHSs) have indeed been reported in GaAs quantum wells but only in tilted magnetic fields, where the in-plane field explicitly breaks the rotational symmetry. Here we report the observation of FQHSs with highly anisotropic longitudinal resistances in purely perpendicular magnetic fields at even-denominator Landau level fillings ν = 5/2 and 7/2 in ultrahigh-quality GaAs twodimensional hole systems. The coexistence of FQHSs and spontaneous symmetry breaking at half fillings signals the emergence of nematic FQHSs which also likely harbor non-Abelian quasiparticle excitations. By gate tuning the hole density, we observe a phase transition from an anisotropic, developing FQHS to an isotropic composite fermion Fermi sea at ν = 7/2. Our calculations suggest that the mixed orbital components in the partially occupied Landau level play a key role in the competition and interplay between topological and nematic orders.
期刊介绍:
Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.