Optimization and pre-use suitability selection for wrist photoplethysmography-based heart rate monitoring in patients with cardiac disease.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-07-23 eCollection Date: 2025-09-01 DOI:10.1093/ehjdh/ztaf084
Paulien Vermunicht, Christophe Buyck, Sebastiaan Naessens, Wendy Hens, Caro Verberckt, Emeline Van Craenenbroeck, Kris Laukens, Lien Desteghe, Hein Heidbuchel
{"title":"Optimization and pre-use suitability selection for wrist photoplethysmography-based heart rate monitoring in patients with cardiac disease.","authors":"Paulien Vermunicht, Christophe Buyck, Sebastiaan Naessens, Wendy Hens, Caro Verberckt, Emeline Van Craenenbroeck, Kris Laukens, Lien Desteghe, Hein Heidbuchel","doi":"10.1093/ehjdh/ztaf084","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Sensor placement, activity type influencing wrist movements, and individual characteristics impact accuracy of wrist-worn photoplethysmography (PPG)-based heart rate (HR) monitors. This study investigated technical interventions to optimize PPG accuracy in patients with cardiac disease.</p><p><strong>Methods and results: </strong>The Fitbit Inspire 2 PPG monitor was evaluated across three cohorts, using a Polar H10 chest strap as reference: (ⅰ) 10 healthy volunteers performed wrist movements with the monitor placed one or three fingers above the wrist to identify optimal placement; (ⅱ) 10 volunteers engaged in sport activities (walking, running, cycling, rowing); (ⅲ) 30 cardiac rehabilitation patients were monitored during exercise to assess baseline accuracy. Patients with low accuracy [mean absolute percentage error (MAPE) < 10% for <70% of training time] underwent technical interventions (sensor cleaning, forearm shaving, position fixation, and/or relocation to the volar wrist). Placement three vs. one fingers above the wrist was significantly more accurate (mean difference in MAPE: -11.4%, <i>P</i> < 0.001). Walking showed the highest accuracy (MAPE = 3.8%), followed by cycling (MAPE = 6.9%) and running (MAPE = 8.5%), while rowing had the lowest accuracy (MAPE = 13.4%, <i>P</i> < 0.001). Among CR patients, 66.7% achieved high baseline accuracy. Technical interventions improved accuracy in 50.0% of those with low baseline accuracy, but no significant predictors of optimization success were identified.</p><p><strong>Conclusion: </strong>Accurate PPG-based monitoring requires a sensor placed higher on the wrist. Nevertheless, only two-thirds of patients are suitable for such monitoring, with improvement by technical adaptations possible (but impractical) in the others. Therefore, assessing baseline accuracy is a prerequisite before relying on these devices for activity guidance.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"1024-1035"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Sensor placement, activity type influencing wrist movements, and individual characteristics impact accuracy of wrist-worn photoplethysmography (PPG)-based heart rate (HR) monitors. This study investigated technical interventions to optimize PPG accuracy in patients with cardiac disease.

Methods and results: The Fitbit Inspire 2 PPG monitor was evaluated across three cohorts, using a Polar H10 chest strap as reference: (ⅰ) 10 healthy volunteers performed wrist movements with the monitor placed one or three fingers above the wrist to identify optimal placement; (ⅱ) 10 volunteers engaged in sport activities (walking, running, cycling, rowing); (ⅲ) 30 cardiac rehabilitation patients were monitored during exercise to assess baseline accuracy. Patients with low accuracy [mean absolute percentage error (MAPE) < 10% for <70% of training time] underwent technical interventions (sensor cleaning, forearm shaving, position fixation, and/or relocation to the volar wrist). Placement three vs. one fingers above the wrist was significantly more accurate (mean difference in MAPE: -11.4%, P < 0.001). Walking showed the highest accuracy (MAPE = 3.8%), followed by cycling (MAPE = 6.9%) and running (MAPE = 8.5%), while rowing had the lowest accuracy (MAPE = 13.4%, P < 0.001). Among CR patients, 66.7% achieved high baseline accuracy. Technical interventions improved accuracy in 50.0% of those with low baseline accuracy, but no significant predictors of optimization success were identified.

Conclusion: Accurate PPG-based monitoring requires a sensor placed higher on the wrist. Nevertheless, only two-thirds of patients are suitable for such monitoring, with improvement by technical adaptations possible (but impractical) in the others. Therefore, assessing baseline accuracy is a prerequisite before relying on these devices for activity guidance.

基于腕部光容积描记仪的心脏病患者心率监测的优化及使用前适宜性选择
简介:传感器位置、影响手腕运动的活动类型和个人特征影响手腕佩戴的基于光电容积脉搏波(PPG)的心率(HR)监测仪的准确性。本研究探讨了优化心脏病患者PPG准确性的技术干预措施。方法和结果:采用Polar H10胸带作为参考,对Fitbit Inspire 2 PPG监测仪进行三组评估:(ⅰ)10名健康志愿者进行手腕运动,监测仪将一根或三根手指置于手腕上方,以确定最佳放置位置;(二)从事体育活动(步行、跑步、骑自行车、划船)的志愿者10名;(ⅲ)对30例心脏康复患者进行运动监测,评估基线准确性。准确率低的患者[平均绝对百分比误差(MAPE) < 10%, P < 0.001)。步行的准确率最高(MAPE = 3.8%),其次是自行车(MAPE = 6.9%)和跑步(MAPE = 8.5%),划船的准确率最低(MAPE = 13.4%, P < 0.001)。在CR患者中,66.7%的患者基线准确度较高。技术干预提高了50.0%的低基线准确率,但没有发现优化成功的显著预测因子。结论:准确的基于ppg的监测需要将传感器放置在手腕上较高的位置。然而,只有三分之二的患者适合这种监测,其他患者可能通过技术调整来改善(但不切实际)。因此,在依赖这些设备进行活动指导之前,评估基线准确性是先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信