Artificial intelligence applications in hypertrophic cardiomyopathy: turns and loopholes.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-07-25 eCollection Date: 2025-09-01 DOI:10.1093/ehjdh/ztaf086
Giorgia Panichella, Manuel Garofalo, Laura Sasso, Alessandra Milazzo, Alessandra Fornaro, Josè Manuel Pioner, Alfonso Bueno-Orovio, Mark van Gils, Annariina Koivu, Luca Mainardi, Virginie Le Rolle, Felix Agakov, Maurizio Pieroni, Katriina Aalto-Setälä, Jari Hyttinen, Iacopo Olivotto, Annamaria Del Franco
{"title":"Artificial intelligence applications in hypertrophic cardiomyopathy: turns and loopholes.","authors":"Giorgia Panichella, Manuel Garofalo, Laura Sasso, Alessandra Milazzo, Alessandra Fornaro, Josè Manuel Pioner, Alfonso Bueno-Orovio, Mark van Gils, Annariina Koivu, Luca Mainardi, Virginie Le Rolle, Felix Agakov, Maurizio Pieroni, Katriina Aalto-Setälä, Jari Hyttinen, Iacopo Olivotto, Annamaria Del Franco","doi":"10.1093/ehjdh/ztaf086","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease where, despite recent advances, accurate diagnosis, risk stratification, and personalized treatment remain challenging. Artificial intelligence (AI) offers a transformative approach to HCM by enabling rapid, precise analysis of complex data. This article reviews the current and potential applications of AI in HCM. AI enhances diagnostic accuracy by analysing electrocardiograms, echocardiography, and cardiac magnetic resonance images, differentiating HCM from other forms of left ventricular hypertrophy, identifying subtle phenotypic variations, and standardizing myocardial fibrosis assessment. Multimodal AI-driven approaches improve risk stratification, therapeutic decision-making, and monitoring of both established and novel therapies, such as cardiac myosin inhibitors. Emerging AI-driven <i>in silico</i> trials and digital twin platforms highlight the potential of combining data-driven and knowledge-based AI with biophysical models to simulate patient-specific disease trajectories, supporting preclinical evaluation and personalized care. As a multidisciplinary case study, the SMASH-HCM consortium is presented to illustrate how digital twin technologies and hybrid modelling can bring AI into clinical practice. Integration of genetic data further enhances AI's ability to identify at-risk individuals and predict disease progression. However, widespread AI applications raise concerns regarding data privacy, ethical considerations, and the risk of biases. Guidelines for researchers and developers-e.g. on trustworthy AI, regulatory frameworks, and transparent policies-are essential to address these possible pitfalls. As AI rapidly evolves, it has the potential to revolutionize drug discovery, disease management, and the patient journey in HCM, making interventions more precise, timely, and patient-centred.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"853-867"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease where, despite recent advances, accurate diagnosis, risk stratification, and personalized treatment remain challenging. Artificial intelligence (AI) offers a transformative approach to HCM by enabling rapid, precise analysis of complex data. This article reviews the current and potential applications of AI in HCM. AI enhances diagnostic accuracy by analysing electrocardiograms, echocardiography, and cardiac magnetic resonance images, differentiating HCM from other forms of left ventricular hypertrophy, identifying subtle phenotypic variations, and standardizing myocardial fibrosis assessment. Multimodal AI-driven approaches improve risk stratification, therapeutic decision-making, and monitoring of both established and novel therapies, such as cardiac myosin inhibitors. Emerging AI-driven in silico trials and digital twin platforms highlight the potential of combining data-driven and knowledge-based AI with biophysical models to simulate patient-specific disease trajectories, supporting preclinical evaluation and personalized care. As a multidisciplinary case study, the SMASH-HCM consortium is presented to illustrate how digital twin technologies and hybrid modelling can bring AI into clinical practice. Integration of genetic data further enhances AI's ability to identify at-risk individuals and predict disease progression. However, widespread AI applications raise concerns regarding data privacy, ethical considerations, and the risk of biases. Guidelines for researchers and developers-e.g. on trustworthy AI, regulatory frameworks, and transparent policies-are essential to address these possible pitfalls. As AI rapidly evolves, it has the potential to revolutionize drug discovery, disease management, and the patient journey in HCM, making interventions more precise, timely, and patient-centred.

Abstract Image

Abstract Image

Abstract Image

人工智能在肥厚性心肌病中的应用:转折与漏洞。
肥厚性心肌病(HCM)是一种异质性疾病,尽管最近取得了进展,但准确的诊断、风险分层和个性化治疗仍然具有挑战性。人工智能(AI)通过实现快速、精确的复杂数据分析,为HCM提供了一种变革性的方法。本文综述了人工智能在HCM中的现状和潜在应用。人工智能通过分析心电图、超声心动图和心脏磁共振图像,将HCM与其他形式的左心室肥厚区分开来,识别细微的表型变异,以及标准化心肌纤维化评估,提高了诊断的准确性。多模式人工智能驱动的方法改善了风险分层、治疗决策以及对现有疗法和新疗法(如心肌肌球蛋白抑制剂)的监测。新兴的人工智能驱动的计算机试验和数字孪生平台突出了将数据驱动和基于知识的人工智能与生物物理模型相结合的潜力,以模拟患者特定的疾病轨迹,支持临床前评估和个性化护理。作为一个多学科案例研究,SMASH-HCM联盟展示了数字孪生技术和混合建模如何将人工智能带入临床实践。基因数据的整合进一步增强了人工智能识别高危个体和预测疾病进展的能力。然而,广泛的人工智能应用引发了对数据隐私、道德考虑和偏见风险的担忧。研究人员和开发人员的指导方针,例如:可信赖的人工智能、监管框架和透明的政策——对于解决这些可能的陷阱至关重要。随着人工智能的迅速发展,它有可能彻底改变HCM中的药物发现、疾病管理和患者旅程,使干预措施更加精确、及时和以患者为中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信