Giorgia Panichella, Manuel Garofalo, Laura Sasso, Alessandra Milazzo, Alessandra Fornaro, Josè Manuel Pioner, Alfonso Bueno-Orovio, Mark van Gils, Annariina Koivu, Luca Mainardi, Virginie Le Rolle, Felix Agakov, Maurizio Pieroni, Katriina Aalto-Setälä, Jari Hyttinen, Iacopo Olivotto, Annamaria Del Franco
{"title":"Artificial intelligence applications in hypertrophic cardiomyopathy: turns and loopholes.","authors":"Giorgia Panichella, Manuel Garofalo, Laura Sasso, Alessandra Milazzo, Alessandra Fornaro, Josè Manuel Pioner, Alfonso Bueno-Orovio, Mark van Gils, Annariina Koivu, Luca Mainardi, Virginie Le Rolle, Felix Agakov, Maurizio Pieroni, Katriina Aalto-Setälä, Jari Hyttinen, Iacopo Olivotto, Annamaria Del Franco","doi":"10.1093/ehjdh/ztaf086","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease where, despite recent advances, accurate diagnosis, risk stratification, and personalized treatment remain challenging. Artificial intelligence (AI) offers a transformative approach to HCM by enabling rapid, precise analysis of complex data. This article reviews the current and potential applications of AI in HCM. AI enhances diagnostic accuracy by analysing electrocardiograms, echocardiography, and cardiac magnetic resonance images, differentiating HCM from other forms of left ventricular hypertrophy, identifying subtle phenotypic variations, and standardizing myocardial fibrosis assessment. Multimodal AI-driven approaches improve risk stratification, therapeutic decision-making, and monitoring of both established and novel therapies, such as cardiac myosin inhibitors. Emerging AI-driven <i>in silico</i> trials and digital twin platforms highlight the potential of combining data-driven and knowledge-based AI with biophysical models to simulate patient-specific disease trajectories, supporting preclinical evaluation and personalized care. As a multidisciplinary case study, the SMASH-HCM consortium is presented to illustrate how digital twin technologies and hybrid modelling can bring AI into clinical practice. Integration of genetic data further enhances AI's ability to identify at-risk individuals and predict disease progression. However, widespread AI applications raise concerns regarding data privacy, ethical considerations, and the risk of biases. Guidelines for researchers and developers-e.g. on trustworthy AI, regulatory frameworks, and transparent policies-are essential to address these possible pitfalls. As AI rapidly evolves, it has the potential to revolutionize drug discovery, disease management, and the patient journey in HCM, making interventions more precise, timely, and patient-centred.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"853-867"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease where, despite recent advances, accurate diagnosis, risk stratification, and personalized treatment remain challenging. Artificial intelligence (AI) offers a transformative approach to HCM by enabling rapid, precise analysis of complex data. This article reviews the current and potential applications of AI in HCM. AI enhances diagnostic accuracy by analysing electrocardiograms, echocardiography, and cardiac magnetic resonance images, differentiating HCM from other forms of left ventricular hypertrophy, identifying subtle phenotypic variations, and standardizing myocardial fibrosis assessment. Multimodal AI-driven approaches improve risk stratification, therapeutic decision-making, and monitoring of both established and novel therapies, such as cardiac myosin inhibitors. Emerging AI-driven in silico trials and digital twin platforms highlight the potential of combining data-driven and knowledge-based AI with biophysical models to simulate patient-specific disease trajectories, supporting preclinical evaluation and personalized care. As a multidisciplinary case study, the SMASH-HCM consortium is presented to illustrate how digital twin technologies and hybrid modelling can bring AI into clinical practice. Integration of genetic data further enhances AI's ability to identify at-risk individuals and predict disease progression. However, widespread AI applications raise concerns regarding data privacy, ethical considerations, and the risk of biases. Guidelines for researchers and developers-e.g. on trustworthy AI, regulatory frameworks, and transparent policies-are essential to address these possible pitfalls. As AI rapidly evolves, it has the potential to revolutionize drug discovery, disease management, and the patient journey in HCM, making interventions more precise, timely, and patient-centred.