Artificial intelligence-driven electrocardiogram analysis for risk stratification in pulmonary embolism.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-07-23 eCollection Date: 2025-09-01 DOI:10.1093/ehjdh/ztaf083
Tanmay A Gokhale, Nathan T Riek, Brent Medoff, Rui Qi Ji, Belinda Rivera-Lebron, Ervin Sejdic, Murat Akcakaya, Samir F Saba, Salah Al-Zaiti, Catalin Toma
{"title":"Artificial intelligence-driven electrocardiogram analysis for risk stratification in pulmonary embolism.","authors":"Tanmay A Gokhale, Nathan T Riek, Brent Medoff, Rui Qi Ji, Belinda Rivera-Lebron, Ervin Sejdic, Murat Akcakaya, Samir F Saba, Salah Al-Zaiti, Catalin Toma","doi":"10.1093/ehjdh/ztaf083","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Among patients with acute pulmonary embolism (PE), rapid identification of those with highest clinical risk can help guide life-saving treatment. However, current risk stratification algorithms involve a multistep process requiring physical exam, imaging, and laboratory results. We investigated the utility of electrocardiogram (ECG) alone to rapidly identify patients at elevated clinical risk by developing and validating a feature-based artificial intelligence (AI) model to predict clinical risk.</p><p><strong>Methods and results: </strong>Patients who were diagnosed with PE over a 9-year period, had an ECG within 1 day of presentation, and were evaluated by our PE response team (PERT) were included. A feature-based random forest model was trained to predict the PERT team's risk stratification from the ECG alone. The ability of the model to predict the clinical risk categorization and the accuracy of both risk stratification approaches in predicting mortality were examined on a holdout test set. Of the overall cohort of 1376 patients, 55% had a submassive (intermediate risk) or massive (high risk) PE, which were grouped together as 'severe PE'. The AI-ECG model was able to predict the clinical classification (low-risk vs. severe PE) with an AUC of 0.83 and F1 score of 0.78 in a holdout test set. A 30-day mortality and in-hospital mortality were significantly different between patients classified by the model as low vs. elevated risk.</p><p><strong>Conclusion: </strong>AI-based analysis of 12-lead ECGs may provide a useful tool in the risk stratification of PE, allowing for rapid identification and treatment of those at highest risk of adverse outcomes.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"989-996"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Among patients with acute pulmonary embolism (PE), rapid identification of those with highest clinical risk can help guide life-saving treatment. However, current risk stratification algorithms involve a multistep process requiring physical exam, imaging, and laboratory results. We investigated the utility of electrocardiogram (ECG) alone to rapidly identify patients at elevated clinical risk by developing and validating a feature-based artificial intelligence (AI) model to predict clinical risk.

Methods and results: Patients who were diagnosed with PE over a 9-year period, had an ECG within 1 day of presentation, and were evaluated by our PE response team (PERT) were included. A feature-based random forest model was trained to predict the PERT team's risk stratification from the ECG alone. The ability of the model to predict the clinical risk categorization and the accuracy of both risk stratification approaches in predicting mortality were examined on a holdout test set. Of the overall cohort of 1376 patients, 55% had a submassive (intermediate risk) or massive (high risk) PE, which were grouped together as 'severe PE'. The AI-ECG model was able to predict the clinical classification (low-risk vs. severe PE) with an AUC of 0.83 and F1 score of 0.78 in a holdout test set. A 30-day mortality and in-hospital mortality were significantly different between patients classified by the model as low vs. elevated risk.

Conclusion: AI-based analysis of 12-lead ECGs may provide a useful tool in the risk stratification of PE, allowing for rapid identification and treatment of those at highest risk of adverse outcomes.

Abstract Image

Abstract Image

Abstract Image

人工智能驱动的肺动脉栓塞风险分层心电图分析。
目的:在急性肺栓塞(PE)患者中,快速识别临床风险最高的患者有助于指导挽救生命的治疗。然而,目前的风险分层算法涉及一个多步骤的过程,需要体检、成像和实验室结果。我们通过开发和验证基于特征的人工智能(AI)模型来预测临床风险,研究了单独使用心电图(ECG)快速识别临床风险升高患者的效用。方法和结果:纳入了9年内被诊断为PE的患者,就诊后1天内进行心电图检查,并由我们的PE反应小组(PERT)评估。训练基于特征的随机森林模型来预测PERT团队仅从ECG的风险分层。模型预测临床风险分类的能力,以及两种风险分层方法预测死亡率的准确性,在一个保留测试集上进行了检验。在1376名患者中,55%的患者患有亚大块性(中等风险)或大块性(高风险)PE,这些患者被归为“严重PE”。AI-ECG模型能够预测临床分类(低风险vs严重PE),在holdout测试集中AUC为0.83,F1评分为0.78。30天死亡率和住院死亡率在被模型分类为低风险和高风险的患者之间有显著差异。结论:基于人工智能的12导联心电图分析可能为PE的风险分层提供有用的工具,允许快速识别和治疗不良后果风险最高的患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信