Artificial intelligence-based accurate myocardial infarction mapping using 12-lead electrocardiography.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-07-01 eCollection Date: 2025-09-01 DOI:10.1093/ehjdh/ztaf077
Hui Wang, Zhifan Gao, Heye Zhang, Yuzhen Zhu, Shichang Lian, Kairui Bo, Shuang Li, Yifeng Gao, Baiyan Zhuang, Zhen Zhou, Xinwei Zhang, Cuiyan Wang, Koen Nieman, Lei Xu
{"title":"Artificial intelligence-based accurate myocardial infarction mapping using 12-lead electrocardiography.","authors":"Hui Wang, Zhifan Gao, Heye Zhang, Yuzhen Zhu, Shichang Lian, Kairui Bo, Shuang Li, Yifeng Gao, Baiyan Zhuang, Zhen Zhou, Xinwei Zhang, Cuiyan Wang, Koen Nieman, Lei Xu","doi":"10.1093/ehjdh/ztaf077","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Assessing myocardial fibrosis (MF) in patients with prior myocardial infarction (MI) is crucial for prognosis. Artificial intelligence-assisted electrocardiography (AI-ECG) has a great potential to detect MF. However, training a precise AI-ECG model requires voluminous ECGs. A biosimulation model may be an efficient substitution. This study aimed to develop and validate a novel artificial intelligence-assisted method using 12-lead electrocardiography (AI-MI-12ECG).</p><p><strong>Methods and results: </strong>The AI-MI-12ECG was trained by a biosimulation model to visualize the presence, location, and size of MF in post-MI patients. A total of 182 post-MI patients were included in this prospective study. The MF detected by AI-MI-12ECG and the cardiologist were compared with the late gadolinium-enhanced (LGE) area of cardiac magnetic resonance (CMR). The results show that AI-MI-12ECG exhibited strong correlation with LGE in identifying the MI location (<i>R</i> = 0.955). Compared with CMR-LGE, AI-MI-12ECG achieved receiver operating characteristic curves of 0.95, 0.95, and 0.89 for left anterior descending coronary artery (LAD), right coronary artery (RCA), and left circumflex coronary artery (LCX) territories, respectively, with high accuracies for LAD (0.95), RCA (0.97), and LCX (0.91).</p><p><strong>Conclusion: </strong>The AI-MI-12ECG trained using the biosimulation model in post-MI patients was adequately aligned with CMR-LGE. This highlights its potential for accurate detection of fibrosis and identification of individuals with significant infarct burdens.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"939-948"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Assessing myocardial fibrosis (MF) in patients with prior myocardial infarction (MI) is crucial for prognosis. Artificial intelligence-assisted electrocardiography (AI-ECG) has a great potential to detect MF. However, training a precise AI-ECG model requires voluminous ECGs. A biosimulation model may be an efficient substitution. This study aimed to develop and validate a novel artificial intelligence-assisted method using 12-lead electrocardiography (AI-MI-12ECG).

Methods and results: The AI-MI-12ECG was trained by a biosimulation model to visualize the presence, location, and size of MF in post-MI patients. A total of 182 post-MI patients were included in this prospective study. The MF detected by AI-MI-12ECG and the cardiologist were compared with the late gadolinium-enhanced (LGE) area of cardiac magnetic resonance (CMR). The results show that AI-MI-12ECG exhibited strong correlation with LGE in identifying the MI location (R = 0.955). Compared with CMR-LGE, AI-MI-12ECG achieved receiver operating characteristic curves of 0.95, 0.95, and 0.89 for left anterior descending coronary artery (LAD), right coronary artery (RCA), and left circumflex coronary artery (LCX) territories, respectively, with high accuracies for LAD (0.95), RCA (0.97), and LCX (0.91).

Conclusion: The AI-MI-12ECG trained using the biosimulation model in post-MI patients was adequately aligned with CMR-LGE. This highlights its potential for accurate detection of fibrosis and identification of individuals with significant infarct burdens.

Abstract Image

Abstract Image

Abstract Image

基于人工智能的12导联心电图精确心肌梗死制图。
目的:评估既往心肌梗死(MI)患者的心肌纤维化(MF)对预后至关重要。人工智能辅助心电图(AI-ECG)在检测MF方面具有很大的潜力。然而,训练一个精确的人工智能心电图模型需要大量的心电图。生物模拟模型可能是一种有效的替代。本研究旨在开发和验证一种使用12导联心电图(AI-MI-12ECG)的新型人工智能辅助方法。方法和结果:AI-MI-12ECG通过生物模拟模型训练,可视化心肌梗死后患者MF的存在、位置和大小。本前瞻性研究共纳入182例心肌梗死后患者。将AI-MI-12ECG和心内科医生检测的MF与心脏磁共振(CMR)晚期钆增强(LGE)区进行比较。结果显示AI-MI-12ECG与LGE对心肌梗死位置的识别有较强的相关性(R = 0.955)。与CMR-LGE相比,AI-MI-12ECG在左冠状动脉前降支(LAD)、右冠状动脉(RCA)和左旋冠状动脉(LCX)区域的受试者工作特征曲线分别为0.95、0.95和0.89,其中LAD(0.95)、RCA(0.97)和LCX(0.91)的准确度较高。结论:采用生物模拟模型训练的AI-MI-12ECG与心肌梗死后患者的CMR-LGE相符。这突出了它在准确检测纤维化和识别有明显梗死负担的个体方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信