Kyler S Mitra, Shannon R Holmberg, Mireya Mota, Ankit Sabharwal, Stephen C Ekker
{"title":"Nondestructive Larval Genotyping of <i>Danio rerio</i> for Mitochondrial and Nuclear DNA Genetics.","authors":"Kyler S Mitra, Shannon R Holmberg, Mireya Mota, Ankit Sabharwal, Stephen C Ekker","doi":"10.1177/15458547251379703","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of nuclear and mitochondrial genomic editing tools has created an urgent need for efficient, nonlethal larval genotyping methods in zebrafish (<i>Danio rerio</i>) research. This study optimizes and validates a nondestructive proteinase K digestion method for mitochondrial and nuclear DNA genotyping while characterizing its impact on larval survival and gene expression. Using optimized protocol parameters, we demonstrate successful amplification of different mitochondrial and nuclear genetic loci with consistently high sensitivity. Molecular validation through PCR, restriction fragment length polymorphism analysis, and Sanger sequencing confirmed the specificity and reliability of the extracted DNA. The method successfully detected C-to-T base edits in the <i>mt-tl1</i> gene introduced using the FusX TALE Base editor system, demonstrating its applicability to gene editing studies. Both 48-well and optimized 96-well formats were used, enabling this approach to be deployed at scale. This optimized method enables researchers to correlate genotypes with phenotypes in longitudinal studies while maintaining specimen viability, particularly valuable for investigating early-onset mitochondrial diseases, and utilizes standard laboratory equipment and reagents, facilitating widespread adoption in zebrafish research while adhering to ethical principles in reducing animal mortality.</p>","PeriodicalId":94273,"journal":{"name":"Zebrafish","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15458547251379703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of nuclear and mitochondrial genomic editing tools has created an urgent need for efficient, nonlethal larval genotyping methods in zebrafish (Danio rerio) research. This study optimizes and validates a nondestructive proteinase K digestion method for mitochondrial and nuclear DNA genotyping while characterizing its impact on larval survival and gene expression. Using optimized protocol parameters, we demonstrate successful amplification of different mitochondrial and nuclear genetic loci with consistently high sensitivity. Molecular validation through PCR, restriction fragment length polymorphism analysis, and Sanger sequencing confirmed the specificity and reliability of the extracted DNA. The method successfully detected C-to-T base edits in the mt-tl1 gene introduced using the FusX TALE Base editor system, demonstrating its applicability to gene editing studies. Both 48-well and optimized 96-well formats were used, enabling this approach to be deployed at scale. This optimized method enables researchers to correlate genotypes with phenotypes in longitudinal studies while maintaining specimen viability, particularly valuable for investigating early-onset mitochondrial diseases, and utilizes standard laboratory equipment and reagents, facilitating widespread adoption in zebrafish research while adhering to ethical principles in reducing animal mortality.