High-efficiency SHG in etchless lithium niobate waveguides enabled by polymer-induced bound states in the continuum.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-09-08 DOI:10.1364/OE.571204
Shengrui Zhang, Shixin Wang, Dongliang Chen, Dingshan Gao, Jianji Dong, Xinliang Zhang
{"title":"High-efficiency SHG in etchless lithium niobate waveguides enabled by polymer-induced bound states in the continuum.","authors":"Shengrui Zhang, Shixin Wang, Dongliang Chen, Dingshan Gao, Jianji Dong, Xinliang Zhang","doi":"10.1364/OE.571204","DOIUrl":null,"url":null,"abstract":"<p><p>Bound states in the continuum (BIC) demonstrate significant potential for achieving strong optical confinement, characterized by their inherent elimination of complex etching processes and low propagation loss. However, efficient second-harmonic generation (SHG) within BIC platforms remains challenging. In this work, we propose an etchless, periodically poled thin-film lithium niobate (TFLN) optical waveguide loaded with a polymer cladding. A quasi-BIC waveguide mode is engineered, exhibiting simulated propagation losses of 0.0090 dB/cm and 0.2142 dB/cm for the fundamental wave and second-harmonic wave, respectively. Leveraging this low-loss BIC waveguide, we achieve enhanced SHG. Experimentally, the fabricated BIC waveguide demonstrates a normalized SHG conversion efficiency of 844% W<sup>-1</sup>cm<sup>-2</sup>, alongside advantages of straightforward fabrication and large process tolerance. This work provides what we believe to be a novel approach for nonlinear optical applications utilizing BIC waveguides.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 18","pages":"38329-38338"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.571204","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bound states in the continuum (BIC) demonstrate significant potential for achieving strong optical confinement, characterized by their inherent elimination of complex etching processes and low propagation loss. However, efficient second-harmonic generation (SHG) within BIC platforms remains challenging. In this work, we propose an etchless, periodically poled thin-film lithium niobate (TFLN) optical waveguide loaded with a polymer cladding. A quasi-BIC waveguide mode is engineered, exhibiting simulated propagation losses of 0.0090 dB/cm and 0.2142 dB/cm for the fundamental wave and second-harmonic wave, respectively. Leveraging this low-loss BIC waveguide, we achieve enhanced SHG. Experimentally, the fabricated BIC waveguide demonstrates a normalized SHG conversion efficiency of 844% W-1cm-2, alongside advantages of straightforward fabrication and large process tolerance. This work provides what we believe to be a novel approach for nonlinear optical applications utilizing BIC waveguides.

连续介质中聚合物诱导束缚态实现无蚀刻铌酸锂波导中的高效SHG。
连续介质中的束缚态(BIC)表现出实现强光学约束的巨大潜力,其特点是固有的消除复杂的蚀刻过程和低传播损耗。然而,在BIC平台内高效的二次谐波产生(SHG)仍然具有挑战性。在这项工作中,我们提出了一种装载聚合物包层的无蚀刻,周期性极化的薄膜铌酸锂(TFLN)光波导。设计了一种准bic波导模式,基波和次谐波的模拟传播损耗分别为0.0090 dB/cm和0.2142 dB/cm。利用这种低损耗BIC波导,我们实现了增强的SHG。实验表明,所制备的BIC波导的归一化SHG转换效率为844% W-1cm-2,并且具有制作简单,工艺公差大的优点。这项工作为利用BIC波导的非线性光学应用提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信