Rayleigh-Wood anomaly-driven robust optical pulling forces in 1D periodic lattices.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-09-08 DOI:10.1364/OE.571947
Jian Shen, Yiyun Chen, Jensen Li, Jack Ng
{"title":"Rayleigh-Wood anomaly-driven robust optical pulling forces in 1D periodic lattices.","authors":"Jian Shen, Yiyun Chen, Jensen Li, Jack Ng","doi":"10.1364/OE.571947","DOIUrl":null,"url":null,"abstract":"<p><p>As a direct manifestation of light-matter interactions, optical forces hold profound significance and broad applications in the microscopic world. We systematically investigate electromagnetic scattering phenomena in 1D lattices and their role in optical force generation. Our findings demonstrate that resonant modes within lattice configurations satisfying the Rayleigh-Wood anomaly condition give rise to substantial modulations in optical forces, prominently featuring the counterintuitive emergence of optical pulling force. The emergence of these pulling forces requires well-defined lattice periodicity, while strong structural disorder effectively suppresses resonant modes and their associated anomalous behavior. Remarkably, this phenomenon exhibits exceptional robustness against variations in material composition, dimensional parameters, geometric configurations, and moderate levels of structural disorder, providing critical insights for designing advanced photonic devices with practical manufacturing tolerances.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 18","pages":"38553-38561"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.571947","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

As a direct manifestation of light-matter interactions, optical forces hold profound significance and broad applications in the microscopic world. We systematically investigate electromagnetic scattering phenomena in 1D lattices and their role in optical force generation. Our findings demonstrate that resonant modes within lattice configurations satisfying the Rayleigh-Wood anomaly condition give rise to substantial modulations in optical forces, prominently featuring the counterintuitive emergence of optical pulling force. The emergence of these pulling forces requires well-defined lattice periodicity, while strong structural disorder effectively suppresses resonant modes and their associated anomalous behavior. Remarkably, this phenomenon exhibits exceptional robustness against variations in material composition, dimensional parameters, geometric configurations, and moderate levels of structural disorder, providing critical insights for designing advanced photonic devices with practical manufacturing tolerances.

一维周期晶格中瑞利-伍德异常驱动的鲁棒光学拉力。
光力作为光与物质相互作用的直接表现形式,在微观世界中有着深远的意义和广泛的应用。我们系统地研究了一维晶格中的电磁散射现象及其在光力产生中的作用。我们的研究结果表明,满足瑞利-伍德异常条件的晶格结构内的共振模式会引起光学力的大量调制,其显著特征是光拉力的反直觉出现。这些引力的出现需要明确的晶格周期性,而强结构无序有效地抑制了共振模式及其相关的异常行为。值得注意的是,这种现象对材料成分、尺寸参数、几何构型和中等水平的结构紊乱的变化具有出色的稳健性,为设计具有实际制造公差的先进光子器件提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信