Optimizing optical chaotic sequences using GAN and the Fisher-Yates algorithm.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-09-08 DOI:10.1364/OE.564934
Daming Wang, Haoran Bian, Yihang Lei, Pengfei Shi, Xueqian Zhang, Jiaxuan Li, Yanhua Hong
{"title":"Optimizing optical chaotic sequences using GAN and the Fisher-Yates algorithm.","authors":"Daming Wang, Haoran Bian, Yihang Lei, Pengfei Shi, Xueqian Zhang, Jiaxuan Li, Yanhua Hong","doi":"10.1364/OE.564934","DOIUrl":null,"url":null,"abstract":"<p><p>An optical chaotic sequence optimization scheme combining deep learning and a special post-processing algorithm is proposed and demonstrated. The proposed scheme incorporates the Generative Adversarial Network into the traditional optical feedback chaotic system to optimize the optical chaotic sequence. Following this, the Fisher-Yates algorithm is applied as a post-processing step to further improve randomness. Finally, the optimized sequence is quantized into a random bit sequence. The key advantages of the proposed scheme include the integration of an artificial neural network into the random bit sequence optimization process, providing a novel perspective for future research. Experimental results demonstrate that the proposed scheme significantly improves the distribution characteristics and complexity of chaotic sequences, effectively suppresses the time-delay signature, and ensures that the optimized sequence successfully passes the NIST statistical test suite.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 18","pages":"37814-37825"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.564934","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An optical chaotic sequence optimization scheme combining deep learning and a special post-processing algorithm is proposed and demonstrated. The proposed scheme incorporates the Generative Adversarial Network into the traditional optical feedback chaotic system to optimize the optical chaotic sequence. Following this, the Fisher-Yates algorithm is applied as a post-processing step to further improve randomness. Finally, the optimized sequence is quantized into a random bit sequence. The key advantages of the proposed scheme include the integration of an artificial neural network into the random bit sequence optimization process, providing a novel perspective for future research. Experimental results demonstrate that the proposed scheme significantly improves the distribution characteristics and complexity of chaotic sequences, effectively suppresses the time-delay signature, and ensures that the optimized sequence successfully passes the NIST statistical test suite.

利用GAN和Fisher-Yates算法优化光学混沌序列。
提出并论证了一种结合深度学习和特殊后处理算法的光学混沌序列优化方案。该方案将生成对抗网络引入到传统的光反馈混沌系统中,对光混沌序列进行优化。在此之后,采用Fisher-Yates算法作为后处理步骤,进一步提高随机性。最后,将优化后的序列量化为随机位序列。该方案的主要优点包括将人工神经网络集成到随机比特序列优化过程中,为未来的研究提供了新的视角。实验结果表明,该方案显著改善了混沌序列的分布特性和复杂度,有效抑制了混沌序列的时滞特征,保证了优化后的混沌序列顺利通过NIST统计测试套件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信