Andrew F Jarnuczak, Orli Yogev, Angelo Andres, Stephanie K Ashenden, Cheng Ye, Fiona Pachl, Andrew Zhang, Maria Emanuela Cuomo, Meizhong Jin
{"title":"Network-driven identification of indisulam neo-substrates for targeted protein degradation.","authors":"Andrew F Jarnuczak, Orli Yogev, Angelo Andres, Stephanie K Ashenden, Cheng Ye, Fiona Pachl, Andrew Zhang, Maria Emanuela Cuomo, Meizhong Jin","doi":"10.1039/d5mo00053j","DOIUrl":null,"url":null,"abstract":"<p><p>Indisulam, a DCAF15-based molecular glue degrader, induces widespread proteome changes with implications for cell division and chromosome segregation. While RBM39 and RBM23 are two well-characterized indisulam neo-substrates, additional targets likely exist. To identify those degradation targets, we applied a network-based approach to prioritize novel neo-substrates from large-scale omics data. Our approach integrates proteome-wide expression measurements with information from publicly accessible databases into a multilayer heterogeneous network. Utilizing a Random Walk with Restart algorithm, we identified a preliminary list of 30 neo-substrates. These proteins are likely interactors with DCAF15 in the presence of indisulam and are subject to subsequent degradation. Experimental validation of hits from the shortlisted candidates confirmed their degradation in a proteasome-dependent manner, supporting their identification as potential novel indisulam neo-substrates. Our work employs established network resources and analytical methods to effectively identify direct targets of the indisulam molecular glue degrader. This approach is readily adaptable for exploring novel targets across other molecular glue systems, enhancing its applicability and value to the drug discovery community.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/d5mo00053j","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Indisulam, a DCAF15-based molecular glue degrader, induces widespread proteome changes with implications for cell division and chromosome segregation. While RBM39 and RBM23 are two well-characterized indisulam neo-substrates, additional targets likely exist. To identify those degradation targets, we applied a network-based approach to prioritize novel neo-substrates from large-scale omics data. Our approach integrates proteome-wide expression measurements with information from publicly accessible databases into a multilayer heterogeneous network. Utilizing a Random Walk with Restart algorithm, we identified a preliminary list of 30 neo-substrates. These proteins are likely interactors with DCAF15 in the presence of indisulam and are subject to subsequent degradation. Experimental validation of hits from the shortlisted candidates confirmed their degradation in a proteasome-dependent manner, supporting their identification as potential novel indisulam neo-substrates. Our work employs established network resources and analytical methods to effectively identify direct targets of the indisulam molecular glue degrader. This approach is readily adaptable for exploring novel targets across other molecular glue systems, enhancing its applicability and value to the drug discovery community.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.