Multilevel Analysis of Response to Plant Growth Promoting and Pathogenic Bacteria in Arabidopsis Roots.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anna Koprivova, Miroslav Berka, Veronika Berková, Daniela Ristova, Gözde Merve Türksoy, Melina Schwier, Philipp Westhoff, Martin Cerny, Stanislav Kopriva
{"title":"Multilevel Analysis of Response to Plant Growth Promoting and Pathogenic Bacteria in Arabidopsis Roots.","authors":"Anna Koprivova, Miroslav Berka, Veronika Berková, Daniela Ristova, Gözde Merve Türksoy, Melina Schwier, Philipp Westhoff, Martin Cerny, Stanislav Kopriva","doi":"10.1094/MPMI-09-25-0125-R","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in plant-microbe interaction research is understanding how plants distinguish between commensal and pathogenic microorganisms. We compared Arabidopsis responses to two contrasting bacterial strains, the plant growth promoting (PGP) <i>Pseudomonas</i> sp. CH267 and the pathogen <i>Burkholderia glumeae</i> PG1, using integrated multi-omics analyses. The pathogen triggered stronger transcriptional reprogramming and proteomic changes in roots than the PGP strain, while both strains also affected numerous leaf proteins indicating systemic responses. Interaction with both strains increased the abundance of sulfur containing metabolites: camalexin, glutathione, and cysteine, in particular under pathogen treatment, which corresponded with elevated total sulfur in the leaves. Root and root exudate metabolomes significantly changed, with amino acids and tricarboxylic acid cycle intermediates accumulating in roots but being diminished in the exudates. Integrative analysis across the omics datasets revealed strong correlations between metabolite levels, protein abundance, and transcript levels, highlighting new links between sulfur metabolism, defense pathways, and mineral nutrition, including iron. Together, these findings uncover the complex multi-layered nature of Arabidopsis responses to commensal and pathogenic bacteria and identify new connections across different regulatory levels.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-09-25-0125-R","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge in plant-microbe interaction research is understanding how plants distinguish between commensal and pathogenic microorganisms. We compared Arabidopsis responses to two contrasting bacterial strains, the plant growth promoting (PGP) Pseudomonas sp. CH267 and the pathogen Burkholderia glumeae PG1, using integrated multi-omics analyses. The pathogen triggered stronger transcriptional reprogramming and proteomic changes in roots than the PGP strain, while both strains also affected numerous leaf proteins indicating systemic responses. Interaction with both strains increased the abundance of sulfur containing metabolites: camalexin, glutathione, and cysteine, in particular under pathogen treatment, which corresponded with elevated total sulfur in the leaves. Root and root exudate metabolomes significantly changed, with amino acids and tricarboxylic acid cycle intermediates accumulating in roots but being diminished in the exudates. Integrative analysis across the omics datasets revealed strong correlations between metabolite levels, protein abundance, and transcript levels, highlighting new links between sulfur metabolism, defense pathways, and mineral nutrition, including iron. Together, these findings uncover the complex multi-layered nature of Arabidopsis responses to commensal and pathogenic bacteria and identify new connections across different regulatory levels.

拟南芥根系对植物促生和致病菌反应的多水平分析。
植物与微生物相互作用研究的一个主要挑战是了解植物如何区分共生微生物和致病微生物。我们使用综合多组学分析比较了拟南芥对两种不同菌株的反应,即植物生长促进菌(PGP)假单胞菌sp. CH267和病原菌伯克霍尔德菌PG1。与PGP菌株相比,PGP菌株在根系中引发了更强的转录重编程和蛋白质组学变化,而这两种菌株也影响了许多叶片蛋白质,表明了系统性反应。与这两种菌株的交互作用增加了含硫代谢物:camalexin、谷胱甘肽和半胱氨酸的丰度,特别是在病原体处理下,这与叶片中总硫的升高相对应。根和根分泌物代谢组发生显著变化,氨基酸和三羧酸循环中间体在根中积累,而在分泌物中减少。跨组学数据集的综合分析揭示了代谢物水平、蛋白质丰度和转录物水平之间的强相关性,突出了硫代谢、防御途径和矿物质营养(包括铁)之间的新联系。总之,这些发现揭示了拟南芥对共生细菌和致病菌反应的复杂多层性质,并确定了不同调控水平之间的新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant-microbe Interactions
Molecular Plant-microbe Interactions 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
250
审稿时长
3 months
期刊介绍: Molecular Plant-Microbe Interactions® (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信