Yuwei Dai, Zhusi Zhong, Yan Qin, Yuli Wang, Guangdi Yu, Andrew Kobets, David W. Swenson, Jerrold L. Boxerman, Gang Li, Shenandoah Robinson, Harrison Bai, Li Yang, Weihua Liao, Zhicheng Jiao
{"title":"AI Model Integrating Imaging and Clinical Data for Predicting CSF Diversion in Neonatal Hydrocephalus: A Preliminary Study","authors":"Yuwei Dai, Zhusi Zhong, Yan Qin, Yuli Wang, Guangdi Yu, Andrew Kobets, David W. Swenson, Jerrold L. Boxerman, Gang Li, Shenandoah Robinson, Harrison Bai, Li Yang, Weihua Liao, Zhicheng Jiao","doi":"10.1002/hbm.70363","DOIUrl":null,"url":null,"abstract":"<p>Predictive tools for stratifying neonatal hydrocephalus into low- and high-risk groups for cerebrospinal fluid (CSF) diversion are currently lacking. We developed and validated an artificial intelligence (AI) model that integrates multimodal imaging and clinical data to predict CSF diversion needs. The development cohort included 116 neonates with suspicion of raised intracranial pressure (ICP) from a Chinese tertiary referral hospital (80 with intracranial pressure > 80 mm H<sub>2</sub>O, 36 with intracranial pressure ≤ 80 mm H<sub>2</sub>O). The external validation cohort consisted of 21 neonates with hydrocephalus from an American medical center, categorized by etiology: prenatal myelomeningocele (MMC) closure (<i>n</i> = 5), postnatal MMC closure (<i>n</i> = 6), and post-hemorrhagic hydrocephalus (PHH) (<i>n</i> = 10). Inclusion criteria required available MRI and complete clinical follow-up to confirm CSF diversion outcomes. The primary outcome was the need for CSF diversion. Model performance was assessed using under the receiver operating characteristics curve (AUC), sensitivity, and specificity. The hybrid AI model achieved an AUC of 0.824 in the development cohort in predicting raised ICP, outperforming both the clinical-only model (AUC 0.528, <i>p</i> < 0.001) and the image-only model (AUC 0.685, <i>p</i> = 0.007). In the external validation cohort, the fused MRI-based model achieved an AUC of 0.808. The model correctly predicted CSF diversion in 4/5 prenatal MMC, 4/6 postnatal MMC, and 9/10 PHH cases. The AI model demonstrated robust performance in predicting the need for CSF diversion, particularly in PHH cases, and has the potential to assist decision-making, especially in settings with limited pediatric neurosurgical expertise. Future work should focus on further refining model performance for complex etiologies such as MMC-associated hydrocephalus.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70363","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Predictive tools for stratifying neonatal hydrocephalus into low- and high-risk groups for cerebrospinal fluid (CSF) diversion are currently lacking. We developed and validated an artificial intelligence (AI) model that integrates multimodal imaging and clinical data to predict CSF diversion needs. The development cohort included 116 neonates with suspicion of raised intracranial pressure (ICP) from a Chinese tertiary referral hospital (80 with intracranial pressure > 80 mm H2O, 36 with intracranial pressure ≤ 80 mm H2O). The external validation cohort consisted of 21 neonates with hydrocephalus from an American medical center, categorized by etiology: prenatal myelomeningocele (MMC) closure (n = 5), postnatal MMC closure (n = 6), and post-hemorrhagic hydrocephalus (PHH) (n = 10). Inclusion criteria required available MRI and complete clinical follow-up to confirm CSF diversion outcomes. The primary outcome was the need for CSF diversion. Model performance was assessed using under the receiver operating characteristics curve (AUC), sensitivity, and specificity. The hybrid AI model achieved an AUC of 0.824 in the development cohort in predicting raised ICP, outperforming both the clinical-only model (AUC 0.528, p < 0.001) and the image-only model (AUC 0.685, p = 0.007). In the external validation cohort, the fused MRI-based model achieved an AUC of 0.808. The model correctly predicted CSF diversion in 4/5 prenatal MMC, 4/6 postnatal MMC, and 9/10 PHH cases. The AI model demonstrated robust performance in predicting the need for CSF diversion, particularly in PHH cases, and has the potential to assist decision-making, especially in settings with limited pediatric neurosurgical expertise. Future work should focus on further refining model performance for complex etiologies such as MMC-associated hydrocephalus.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.