William J Branchett, Evangelos Stavropoulos, Jessica Shields, Alaa Al-Dibouni, Marcos Cardoso, Ana Isabel Fernandes, Lúcia Moreira-Teixeira, Hubert Slawinski, Anna Mikolajczak, Angela Rodgers, Margarida Saraiva, Anne O'Garra
{"title":"Type I IFN drives neutrophil swarming, impeding lung T cell-macrophage interactions and TB control.","authors":"William J Branchett, Evangelos Stavropoulos, Jessica Shields, Alaa Al-Dibouni, Marcos Cardoso, Ana Isabel Fernandes, Lúcia Moreira-Teixeira, Hubert Slawinski, Anna Mikolajczak, Angela Rodgers, Margarida Saraiva, Anne O'Garra","doi":"10.1084/jem.20250466","DOIUrl":null,"url":null,"abstract":"<p><p>The early immune mechanisms determining Mycobacterium tuberculosis infection outcome are unclear. Using bulk and scRNA-seq over the first weeks of infection, we describe an unexpected, higher early pulmonary type I IFN response in relatively resistant C57BL/6 as compared with highly TB-susceptible C3HeB/FeJ mice. C57BL/6 mice showed pronounced early monocyte-derived macrophage (MDM) accumulation and extensive CD4+ T cell-MDM interactions in lung lesions, accompanied by high expression of T cell-attractant chemokines by MDMs. Conversely, lesions in C3HeB/FeJ mice were dominated by neutrophils with high expression of pro-inflammatory chemokines, from which CD4+ T cells were spatially segregated. Early type I IFN signaling blockade reduced bacterial load and neutrophil swarming within early TB lesions while increasing CD4+ T cell numbers in both C57BL/6 and C3HeB/FeJ mice, with later more pronounced effects on bacterial load in C3HeB/FeJ mice. These data suggest that early type I IFN signaling during M. tuberculosis infection favors neutrophil accumulation and limits CD4+ T cell infiltration into developing lesions.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 12","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20250466","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The early immune mechanisms determining Mycobacterium tuberculosis infection outcome are unclear. Using bulk and scRNA-seq over the first weeks of infection, we describe an unexpected, higher early pulmonary type I IFN response in relatively resistant C57BL/6 as compared with highly TB-susceptible C3HeB/FeJ mice. C57BL/6 mice showed pronounced early monocyte-derived macrophage (MDM) accumulation and extensive CD4+ T cell-MDM interactions in lung lesions, accompanied by high expression of T cell-attractant chemokines by MDMs. Conversely, lesions in C3HeB/FeJ mice were dominated by neutrophils with high expression of pro-inflammatory chemokines, from which CD4+ T cells were spatially segregated. Early type I IFN signaling blockade reduced bacterial load and neutrophil swarming within early TB lesions while increasing CD4+ T cell numbers in both C57BL/6 and C3HeB/FeJ mice, with later more pronounced effects on bacterial load in C3HeB/FeJ mice. These data suggest that early type I IFN signaling during M. tuberculosis infection favors neutrophil accumulation and limits CD4+ T cell infiltration into developing lesions.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.