Marcelio A. Shammami , Alyssa Virola-Iarussi , Ian McCrary , Amy Ralston
{"title":"Primitive means first, not worst: Critical roles for primitive endoderm in embryos and embryo models","authors":"Marcelio A. Shammami , Alyssa Virola-Iarussi , Ian McCrary , Amy Ralston","doi":"10.1016/j.ydbio.2025.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>In mammals, extraembryonic tissues, such as the placenta and yolk sac, are the first cell types to be specified during development because they enable the embryo to take residence and thrive in the uterine environment. Among extraembryonic tissue types, primitive endoderm (PrE), which will eventually contribute to the yolk sac, is especially fascinating. The PrE itself is named for functioning like the embryo's original gut-like tissue. For many years, our understanding of the PrE was limited by the intrinsically challenging nature of accessing and observing this tissue. However, pioneering studies in mouse have gradually revealed that the PrE is more than just nutritive in function. In fact, the PrE lineage gives rise to signaling centers that oversee developmental processes within the fetus – through processes that are very likely conserved between rodents and primates. Thus, understanding the stages between PrE and yolk sac promises clinically relevant models, including stem cell embryo models, which could lead to enhanced success for <em>in vitro</em> fertilization (IVF). Here, we examine the functions of PrE in the context of embryos, stem cells, and embryo models.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"528 ","pages":"Pages 255-263"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160625002660","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In mammals, extraembryonic tissues, such as the placenta and yolk sac, are the first cell types to be specified during development because they enable the embryo to take residence and thrive in the uterine environment. Among extraembryonic tissue types, primitive endoderm (PrE), which will eventually contribute to the yolk sac, is especially fascinating. The PrE itself is named for functioning like the embryo's original gut-like tissue. For many years, our understanding of the PrE was limited by the intrinsically challenging nature of accessing and observing this tissue. However, pioneering studies in mouse have gradually revealed that the PrE is more than just nutritive in function. In fact, the PrE lineage gives rise to signaling centers that oversee developmental processes within the fetus – through processes that are very likely conserved between rodents and primates. Thus, understanding the stages between PrE and yolk sac promises clinically relevant models, including stem cell embryo models, which could lead to enhanced success for in vitro fertilization (IVF). Here, we examine the functions of PrE in the context of embryos, stem cells, and embryo models.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.