Sequential nanotheranostics based on hollow mesoporous silica loaded doxorubicin and seed kernel extract from Mangifera indica L. as adjuvant therapy against hepatocellular carcinoma.

IF 8.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-09-22 DOI:10.1080/10717544.2025.2559838
Arunsajee Sae-Be, Jiraporn Leanpolchareanchai, Piyaporn Plommaithong, Apichat Chatsukit, Shanapa Ratthanakanungthum, Kuntida Wongwattanasan, Tomoki Ota, Sarunyakorn Raowong, Pongtip Sithisarn, Savita Chewchinda, Parichart Naruphontjirakul, Teerasit Termsaithong, Thana Sutthibutpong, Varaporn Buraphacheep Junyaprasert, Khanit Sa-Ngiamsuntorn, Rapepol Bavovada, Pimolpan Pithayanukul, Alexandra E Porter, Pakatip Ruenraroengsak
{"title":"Sequential nanotheranostics based on hollow mesoporous silica loaded doxorubicin and seed kernel extract from <i>Mangifera indica</i> L. as adjuvant therapy against hepatocellular carcinoma.","authors":"Arunsajee Sae-Be, Jiraporn Leanpolchareanchai, Piyaporn Plommaithong, Apichat Chatsukit, Shanapa Ratthanakanungthum, Kuntida Wongwattanasan, Tomoki Ota, Sarunyakorn Raowong, Pongtip Sithisarn, Savita Chewchinda, Parichart Naruphontjirakul, Teerasit Termsaithong, Thana Sutthibutpong, Varaporn Buraphacheep Junyaprasert, Khanit Sa-Ngiamsuntorn, Rapepol Bavovada, Pimolpan Pithayanukul, Alexandra E Porter, Pakatip Ruenraroengsak","doi":"10.1080/10717544.2025.2559838","DOIUrl":null,"url":null,"abstract":"<p><p>Mango seed kernel extract (MSKE) and its phytochemical compositions were investigated for their anticancer activities and synergistic effects with doxorubicin (DOX) against hepatocellular carcinoma (HCC) in both 2D and 3D culture models. Molecular docking studies were conducted to elucidate the mechanisms of DOX, MSKE, and major phytochemical components against overexpressed HCC-related proteins. Co-delivery of DOX and MSKE demonstrated significant synergistic anticancer activity in both models. A sequential nanotheranostic platform (SNP), consisting of MSKE encapsulated aminated hollow mesoporous silica nanoparticles capped with graphene quantum dots (GQD-MSKE-NH<sub>2</sub>HMSNs) and DOX encapsulated HMSNs (DOX-HMSNs), was synthesized for HCC treatment. GQD conjugation allowed real-time cellular tracking and photothermal therapy (PTT). The SNP exhibited particle sizes of 96.12 ± 5.12 nm for GQD-MSKE-NH<sub>2</sub>HMSNs and 94.99 ± 6.30 nm for DOX-HMSNs, both with positive surface charges. Encapsulation efficiency (%EE) and loading capacity (%LC) of GQD-MSKE-NH<sub>2</sub>HMSNs were 95.50 ± 0.20% and 46.72 ± 1.14%, respectively, while DOX-HMSNs achieved 96.42 ± 2.48 %EE and 29.0 ± 0.70 %LC. GQD-MSKE-NH<sub>2</sub>HMSNs provided PTT and disrupted the tumor microenvironment, collagen type 1, thereby enhancing the penetration of GQD-MSKE-NH<sub>2</sub>HMSNs in 3D-HCC spheroids. In parallel, DOX-HMSNs exhibited a pH-responsive drug release behavior, allowing controlled DOX delivery in the acidic tumor area. Therefore, the SNP demonstrated significantly higher anticancer efficacy than the combination of MSKE and DOX at equivalent concentrations and provided the synergistic effect of the triple combination therapy (herbal adjuvant, PTT and chemotherapy) against HCC.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2559838"},"PeriodicalIF":8.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12459191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2559838","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Mango seed kernel extract (MSKE) and its phytochemical compositions were investigated for their anticancer activities and synergistic effects with doxorubicin (DOX) against hepatocellular carcinoma (HCC) in both 2D and 3D culture models. Molecular docking studies were conducted to elucidate the mechanisms of DOX, MSKE, and major phytochemical components against overexpressed HCC-related proteins. Co-delivery of DOX and MSKE demonstrated significant synergistic anticancer activity in both models. A sequential nanotheranostic platform (SNP), consisting of MSKE encapsulated aminated hollow mesoporous silica nanoparticles capped with graphene quantum dots (GQD-MSKE-NH2HMSNs) and DOX encapsulated HMSNs (DOX-HMSNs), was synthesized for HCC treatment. GQD conjugation allowed real-time cellular tracking and photothermal therapy (PTT). The SNP exhibited particle sizes of 96.12 ± 5.12 nm for GQD-MSKE-NH2HMSNs and 94.99 ± 6.30 nm for DOX-HMSNs, both with positive surface charges. Encapsulation efficiency (%EE) and loading capacity (%LC) of GQD-MSKE-NH2HMSNs were 95.50 ± 0.20% and 46.72 ± 1.14%, respectively, while DOX-HMSNs achieved 96.42 ± 2.48 %EE and 29.0 ± 0.70 %LC. GQD-MSKE-NH2HMSNs provided PTT and disrupted the tumor microenvironment, collagen type 1, thereby enhancing the penetration of GQD-MSKE-NH2HMSNs in 3D-HCC spheroids. In parallel, DOX-HMSNs exhibited a pH-responsive drug release behavior, allowing controlled DOX delivery in the acidic tumor area. Therefore, the SNP demonstrated significantly higher anticancer efficacy than the combination of MSKE and DOX at equivalent concentrations and provided the synergistic effect of the triple combination therapy (herbal adjuvant, PTT and chemotherapy) against HCC.

基于中空介孔二氧化硅负载阿霉素和芒果仁提取物的序贯纳米治疗作为肝细胞癌的辅助治疗。
在二维和三维培养模型中,研究了芒果籽仁提取物(MSKE)及其植物化学成分的抗癌活性以及与阿霉素(DOX)对肝细胞癌(HCC)的协同作用。分子对接研究旨在阐明DOX、MSKE和主要植物化学成分对抗过表达hcc相关蛋白的机制。在两种模型中,DOX和MSKE共同递送显示出显著的协同抗癌活性。合成了一种序列纳米治疗平台(SNP),由包覆石墨烯量子点的MSKE包封胺化中空介孔二氧化硅纳米颗粒(gqd - msk - nh2hmsns)和DOX包封HMSNs (DOX-HMSNs)组成,用于HCC治疗。GQD结合允许实时细胞跟踪和光热治疗(PTT)。gqd - msk - nh2hmsns的SNP粒径为96.12±5.12 nm, DOX-HMSNs的SNP粒径为94.99±6.30 nm,表面均带正电荷。gqd - msk - nh2hmsns的包封效率(%EE)和载药量(%LC)分别为95.50±0.20%和46.72±1.14%,DOX-HMSNs的包封率(96.42±2.48%)和LC(29.0±0.70%)。gqd - msk - nh2hmsns提供PTT并破坏肿瘤微环境1型胶原,从而增强gqd - msk - nh2hmsns在3D-HCC球体中的渗透。同时,DOX- hmsn表现出ph响应性药物释放行为,允许在酸性肿瘤区域控制DOX的递送。因此,SNP的抗癌效果明显高于同等浓度的MSKE和DOX联合治疗,并提供了三联治疗(中草药佐剂、PTT和化疗)对HCC的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信