{"title":"Msst-eegnet: multi-scale spatio-temporal feature extraction using inception and temporal pyramid pooling for motor imagery classification.","authors":"Rashmi Mishra, R K Agrawal, Jyoti Singh Kirar","doi":"10.1007/s11571-025-10337-8","DOIUrl":null,"url":null,"abstract":"<p><p>Motor imagery classification is an essential component of Brain-computer interface systems to interpret and recognize brain signals generated during the visualization of motor imagery tasks by a subject. The objective of this work is to develop a novel DL model to extract discriminative features for better generalization performance to recognize motor imagery tasks. This paper presents a novel Multi-scale spatio-temporal network (MSST-EEGNet) to extract discriminative temporal, spectral, and spatial features for motor imagery task classification. The proposed MSST-EEGNet model includes three modules namely the inception module with dilated convolution, the temporal pyramid pooling module, and the classification module. Multi-scale temporal features along with spatial features are extracted using the inception block with the dilated convolution module. A set of multi-level fine-grained and coarse-grained features are extracted using a temporal pyramid pooling module. Further, categorical cross-entropy in combination with center loss is used as a loss function. Experiments are carried out on three benchmark datasets including the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset. The evaluation results shows that the proposed MSST-EEGNet model outperforms eight existing DL models in terms of classification accuracy for subject-specific and cross-session settings. It also outperforms eight existing DL models and six existing transfer-learning models for cross-subject setting. For the subject-specific classification the proposed MSST-EEGNet model achieved an accuracy of 0.8426 ± 0.1061, 0.7779 ± 0.0938, and 0.7365 ± 0.1477 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. For the cross-session setting, the proposed MSST-EEGNet model achieved an accuracy of 0.7709 ± 0.1098, 0.7524 ± 0.1017, and 0.6860 ± 0.0990 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. For the cross-subject setting, the proposed MSST-EEGNet model achieved an accuracy of 0.7288 ± 0.0730, 0.8161 ± 0.963, and 0.7075 ± 0.0746 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. Furthermore, a non-parametric Friedman statistical test demonstrates statistically significant superior performance of the proposed MSST-EEGNet model over the existing models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"150"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10337-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Motor imagery classification is an essential component of Brain-computer interface systems to interpret and recognize brain signals generated during the visualization of motor imagery tasks by a subject. The objective of this work is to develop a novel DL model to extract discriminative features for better generalization performance to recognize motor imagery tasks. This paper presents a novel Multi-scale spatio-temporal network (MSST-EEGNet) to extract discriminative temporal, spectral, and spatial features for motor imagery task classification. The proposed MSST-EEGNet model includes three modules namely the inception module with dilated convolution, the temporal pyramid pooling module, and the classification module. Multi-scale temporal features along with spatial features are extracted using the inception block with the dilated convolution module. A set of multi-level fine-grained and coarse-grained features are extracted using a temporal pyramid pooling module. Further, categorical cross-entropy in combination with center loss is used as a loss function. Experiments are carried out on three benchmark datasets including the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset. The evaluation results shows that the proposed MSST-EEGNet model outperforms eight existing DL models in terms of classification accuracy for subject-specific and cross-session settings. It also outperforms eight existing DL models and six existing transfer-learning models for cross-subject setting. For the subject-specific classification the proposed MSST-EEGNet model achieved an accuracy of 0.8426 ± 0.1061, 0.7779 ± 0.0938, and 0.7365 ± 0.1477 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. For the cross-session setting, the proposed MSST-EEGNet model achieved an accuracy of 0.7709 ± 0.1098, 0.7524 ± 0.1017, and 0.6860 ± 0.0990 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. For the cross-subject setting, the proposed MSST-EEGNet model achieved an accuracy of 0.7288 ± 0.0730, 0.8161 ± 0.963, and 0.7075 ± 0.0746 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. Furthermore, a non-parametric Friedman statistical test demonstrates statistically significant superior performance of the proposed MSST-EEGNet model over the existing models.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.