Synergistic 2D-2D Interfacial Engineering Activates NiOOH as the Key Site on NiSe2/Ni3Se4 Coupled with NiCoFe-Layered Double Hydroxides Toward Urea Electrocatalysis.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Man-Kei Wong, Nabilah Saafie, Shaoyu Yuan, Jian Yiing Loh, Feng Ming Yap, Xianhai Zeng, Wee-Jun Ong
{"title":"Synergistic 2D-2D Interfacial Engineering Activates NiOOH as the Key Site on NiSe<sub>2</sub>/Ni<sub>3</sub>Se<sub>4</sub> Coupled with NiCoFe-Layered Double Hydroxides Toward Urea Electrocatalysis.","authors":"Man-Kei Wong, Nabilah Saafie, Shaoyu Yuan, Jian Yiing Loh, Feng Ming Yap, Xianhai Zeng, Wee-Jun Ong","doi":"10.1002/smtd.202500261","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic urea-assisted hydrogen production represents an awe-inspiring breakthrough, advancing sustainable global energy security and environmental remediation. Herein, an innovative self-supported heterostructure electrocatalyst, NiSe<sub>2</sub>/Ni<sub>3</sub>Se<sub>4</sub>@NiCoFe-LDH/NF, is fabricated via a facile hydrothermal-selenization-electrodeposition method for bifunctional HER and UOR. The integration of 2D LDH nanosheets with 2D dual-phased nickel selenides enhances active site density, structural lustiness and charge/mass transport, sustaining performance for over 60 h at high current density (100 mA cm<sup>-2</sup>) and achieving high Faradaic efficiencies of 98.90% for HER and 90.97% for UOR. The NSLDH-0.7/NF exhibits low overpotential (potential) of 110 mV versus RHE (1.295 V versus RHE) to attain a current density of 10 mA cm<sup>-2</sup> in alkaline media, with ultralow Tafel slope of 13.23 mV dec<sup>-1</sup> (21.98 mV dec<sup>-1</sup>) in catalyzing HER (UOR), which is comparatively lower compared to the reported values in literature. The in situ Raman investigation highlights NiOOH as the stable active site responsible for catalyzing urea oxidation, effectively linking catalyst reconstruction to its electrochemical performance. This work demonstrates the practical viability of this appealing electrocatalyst in a two-electrode urea electrocatalytic cell, while offering novel insight into the rational design of efficient electrocatalysts for simultaneous wastewater purification and sustainable hydrogen production.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e00261"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500261","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic urea-assisted hydrogen production represents an awe-inspiring breakthrough, advancing sustainable global energy security and environmental remediation. Herein, an innovative self-supported heterostructure electrocatalyst, NiSe2/Ni3Se4@NiCoFe-LDH/NF, is fabricated via a facile hydrothermal-selenization-electrodeposition method for bifunctional HER and UOR. The integration of 2D LDH nanosheets with 2D dual-phased nickel selenides enhances active site density, structural lustiness and charge/mass transport, sustaining performance for over 60 h at high current density (100 mA cm-2) and achieving high Faradaic efficiencies of 98.90% for HER and 90.97% for UOR. The NSLDH-0.7/NF exhibits low overpotential (potential) of 110 mV versus RHE (1.295 V versus RHE) to attain a current density of 10 mA cm-2 in alkaline media, with ultralow Tafel slope of 13.23 mV dec-1 (21.98 mV dec-1) in catalyzing HER (UOR), which is comparatively lower compared to the reported values in literature. The in situ Raman investigation highlights NiOOH as the stable active site responsible for catalyzing urea oxidation, effectively linking catalyst reconstruction to its electrochemical performance. This work demonstrates the practical viability of this appealing electrocatalyst in a two-electrode urea electrocatalytic cell, while offering novel insight into the rational design of efficient electrocatalysts for simultaneous wastewater purification and sustainable hydrogen production.

协同2D-2D界面工程激活NiOOH作为nis2 /Ni3Se4偶联镍层双氢氧化物对尿素电催化的关键位点。
催化尿素辅助制氢代表了一项令人敬畏的突破,促进了可持续的全球能源安全和环境修复。本文采用水热硒化电沉积法制备了一种新型自支撑异质结构电催化剂nis2 /Ni3Se4@NiCoFe-LDH/NF,用于双功能HER和UOR。二维LDH纳米片与二维双相硒化镍的集成提高了活性位点密度、结构光泽度和电荷/质量输运,在高电流密度(100 mA cm-2)下保持超过60小时的性能,并实现了HER的98.90%和UOR的90.97%的高法拉第效率。NSLDH-0.7/NF在碱性介质中表现出较低的过电位(电位),相对于RHE为110 mV(相对于RHE为1.295 V),达到10 mA cm-2的电流密度,催化HER (UOR)的超低塔菲尔斜率为13.23 mV dec-1 (21.98 mV dec-1),与文献报道的值相比相对较低。原位拉曼研究强调NiOOH是负责催化尿素氧化的稳定活性位点,有效地将催化剂重建与其电化学性能联系起来。这项工作证明了这种吸引人的电催化剂在双电极尿素电催化电池中的实际可行性,同时为同时净化废水和可持续制氢的高效电催化剂的合理设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信