{"title":"Benzoxazole-Acrylonitriles: Dual Bioactivity and DNA Binding from a Sustainable Synthetic Approach.","authors":"Marina Galić, Tamara Rohtek, Leentje Persoons, Dirk Daelemans, Mihailo Banjanac, Tea Bruketa, Marijana Radić Stojković, Marijana Hranjec","doi":"10.1002/cmdc.202500429","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient synthesis in aqueous media is employed to prepare targeted compounds to evaluate antiproliferative, antibacterial, and antiviral activity in vitro. The biological activity is influenced by the type and number of substituents placed at phenyl or benzoxazole ring. Acrylonitriles substituted with 3,4-dihydroxy 50, 51, 3,4,5-tryhidroxy 52, 53, and 4-N,N-diethyl-amino 55 groups demonstrate potent antiproliferative effects against cancer cell lines, with IC<sub>50</sub> values from 0.7 to 5.8 μM. Their impact on normal cell viability is assessed. The most active benzoxazoles induce DNA damage and are analyzed for their interaction with ct-DNA. UV/Vis titrations, thermal melting assays, and circular dichroism suggest an intercalative mode for the 4-N,N-diethylamino 55 and partial intercalation for the 3,4-dihydroxy 50 and 3,4,5-tryhidroxy derivative 52. Derivative 55 induces apoptosis and cell cycle arrest in cancer cells. Among tested benzoxazoles, significant antiviral activity against HCoV OC43 is observed for the 2-naphthyl 32, 3-indolyl 41 and 42 and p-hydroxy derivative 48 (EC<sub>50</sub> from 2.1 to 8.5 μM). Furthermore, antibacterial activity is most effective for the 3,4-dihydroxy and bromine substituted acrylonitrile 51 against S. aureus (MIC 8 μM) and the efflux pump-deleted mutant of E. coli (MIC 4 μM), which is also observed for the hydroxy and bromine substituted 49.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202500429"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202500429","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient synthesis in aqueous media is employed to prepare targeted compounds to evaluate antiproliferative, antibacterial, and antiviral activity in vitro. The biological activity is influenced by the type and number of substituents placed at phenyl or benzoxazole ring. Acrylonitriles substituted with 3,4-dihydroxy 50, 51, 3,4,5-tryhidroxy 52, 53, and 4-N,N-diethyl-amino 55 groups demonstrate potent antiproliferative effects against cancer cell lines, with IC50 values from 0.7 to 5.8 μM. Their impact on normal cell viability is assessed. The most active benzoxazoles induce DNA damage and are analyzed for their interaction with ct-DNA. UV/Vis titrations, thermal melting assays, and circular dichroism suggest an intercalative mode for the 4-N,N-diethylamino 55 and partial intercalation for the 3,4-dihydroxy 50 and 3,4,5-tryhidroxy derivative 52. Derivative 55 induces apoptosis and cell cycle arrest in cancer cells. Among tested benzoxazoles, significant antiviral activity against HCoV OC43 is observed for the 2-naphthyl 32, 3-indolyl 41 and 42 and p-hydroxy derivative 48 (EC50 from 2.1 to 8.5 μM). Furthermore, antibacterial activity is most effective for the 3,4-dihydroxy and bromine substituted acrylonitrile 51 against S. aureus (MIC 8 μM) and the efflux pump-deleted mutant of E. coli (MIC 4 μM), which is also observed for the hydroxy and bromine substituted 49.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.