Unveiling the Direct Air Capture and Transformation to Formate Under Mild Conditions.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-22 DOI:10.1002/cssc.202501284
Julián E Sánchez-Velandia, Vitoria Gonçalves Pina, Mónica Oliva, Vicent S Safont, Carlos Echeverría-Arrondo, Eduardo García-Verdugo, Víctor Sans, Marcileia Zanatta
{"title":"Unveiling the Direct Air Capture and Transformation to Formate Under Mild Conditions.","authors":"Julián E Sánchez-Velandia, Vitoria Gonçalves Pina, Mónica Oliva, Vicent S Safont, Carlos Echeverría-Arrondo, Eduardo García-Verdugo, Víctor Sans, Marcileia Zanatta","doi":"10.1002/cssc.202501284","DOIUrl":null,"url":null,"abstract":"<p><p>Addressing the challenges in the inherent direct air capture and conversion (DACC) is of special interest. This study focuses on the development and optimization of hydroxide-based absorbents for CO<sub>2</sub> capture and subsequent hydrogenation to formate. The research built upon previous work with hydroxide-based systems, which successfully captured atmospheric CO<sub>2</sub> but left open questions regarding the effects of solvents and cations on capture efficiency. A systematic experimental and theoretical investigation is conducted to evaluate a series of organic cations (tetrabutyl ammonium and phosphonium) and different solvents (DMSO, H<sub>2</sub>O, MeOH) in the CO<sub>2</sub> capture and further hydrogenation to formate. The findings demonstrate a CO<sub>2</sub> capture efficiency of up to 1.0 mol CO<sub>2</sub> per mol of TBA<sup>+</sup> (tetrabutylammonium) in DMSO/water, with water boosting the overall sorption process. Molecular dynamics simulations revealed that solvent composition controls solvation and aggregation behavior. Additionally, the hydrogenation of the captured bicarbonate is optimized using Ru-based complexes. Ru<sub>3</sub>(CO)<sub>12</sub> achieved a formate yield of up to >99% under mild hydrogen pressure (5 bar), smaller pressure reported so far for DACC. Density of functional theory calculations provided key insights into the reaction pathway. These insights contribute to the advancement of efficient DACC technologies by reducing H<sub>2</sub> pressure requirements while maximizing CO<sub>2</sub>-to-formate conversion.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501284"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501284","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the challenges in the inherent direct air capture and conversion (DACC) is of special interest. This study focuses on the development and optimization of hydroxide-based absorbents for CO2 capture and subsequent hydrogenation to formate. The research built upon previous work with hydroxide-based systems, which successfully captured atmospheric CO2 but left open questions regarding the effects of solvents and cations on capture efficiency. A systematic experimental and theoretical investigation is conducted to evaluate a series of organic cations (tetrabutyl ammonium and phosphonium) and different solvents (DMSO, H2O, MeOH) in the CO2 capture and further hydrogenation to formate. The findings demonstrate a CO2 capture efficiency of up to 1.0 mol CO2 per mol of TBA+ (tetrabutylammonium) in DMSO/water, with water boosting the overall sorption process. Molecular dynamics simulations revealed that solvent composition controls solvation and aggregation behavior. Additionally, the hydrogenation of the captured bicarbonate is optimized using Ru-based complexes. Ru3(CO)12 achieved a formate yield of up to >99% under mild hydrogen pressure (5 bar), smaller pressure reported so far for DACC. Density of functional theory calculations provided key insights into the reaction pathway. These insights contribute to the advancement of efficient DACC technologies by reducing H2 pressure requirements while maximizing CO2-to-formate conversion.

揭示直接空气捕获和转化为甲酸在温和条件下。
解决固有的直接空气捕获和转换(DACC)的挑战是特别感兴趣的。本研究的重点是开发和优化基于氢氧化物的吸收剂,用于二氧化碳捕获和随后的氢化生成甲酸。这项研究建立在先前的氢氧化物系统的基础上,氢氧化物系统成功地捕获了大气中的二氧化碳,但在溶剂和阳离子对捕获效率的影响方面留下了悬而未决的问题。通过系统的实验和理论研究,评价了一系列有机阳离子(四丁基铵和磷酸)和不同溶剂(DMSO、H2O、MeOH)在CO2捕集和进一步加氢生成甲酸盐中的作用。研究结果表明,在DMSO/水中,每摩尔TBA+(四丁基铵)的CO2捕获效率高达1.0 mol CO2,而水促进了整个吸附过程。分子动力学模拟表明,溶剂组成控制着溶剂化和聚集行为。此外,利用钌基配合物优化了捕获的碳酸氢盐的氢化反应。在温和的氢压力(5 bar)下,Ru3(CO)12的甲酸产率高达bbbb99 %,目前报道的DACC压力较小。泛函理论计算的密度提供了对反应途径的关键见解。这些见解有助于提高高效DACC技术的发展,降低H2压力要求,同时最大限度地提高二氧化碳到甲酸的转化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信