Xiaoping Wang, Bowen Yang, Haoye Wang, Haixin Guo, Richard Lee Smith, Yaqiong Su, Xinhua Qi
{"title":"Oxidation of 5-Hydroxymethylfurfural over ZnIn<sub>2</sub>S<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> Photocatalyst Modulated by Sulfur Vacancy Defects and Schottky Heterojunctions.","authors":"Xiaoping Wang, Bowen Yang, Haoye Wang, Haixin Guo, Richard Lee Smith, Yaqiong Su, Xinhua Qi","doi":"10.1002/cssc.202501504","DOIUrl":null,"url":null,"abstract":"<p><p>Conversion of biomass into chemical products with solar energy is an important avenue for technological sustainability. Constructing efficient Schottky heterojunctions with vacancy defects can be a productive approach for achieving photooxidation of 5-hydroxymethylfurfural (HMF). Herein, sulfur vacancy (Vs) defect-enriched ZnIn<sub>2</sub>S<sub>4</sub> is combined with Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Vs-ZIS/MX) containing Schottky heterojunctions via self-assembly to form photocatalysts for efficient oxidation of HMF to 2,5-diformylfuran (DFF) under air-ambient conditions. HMF conversion of 87.3% with 72.9% DFF selectivity is obtained by the Vs-ZIS/MX heterojunction photocatalyst under visible light (420 nm < λ <780 nm, 2 h). Density functional theory calculations reveal that the Schottky heterojunction and regulated S vacancies enhance the electronic coupling and lower HMF adsorption energy, establishing a directional electron transfer channel from Vs-ZIS to MXene and an enhanced built-in electric field. Extended X-ray absorption fine structure spectroscopy shows that a stable metal (Zn)O bond coordination is formed between Vs-ZIS and MXene, and the enrichment of local electrons at S vacancy defects sites and metal-O coordination makes it possible to extract the delocalized electrons from ZIS to MXene. This work demonstrates a method to modulate the electron cloud density and enhance transport with a built-in electric field on photogenerated carriers for catalytic conversion of organic alcohols.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501504"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501504","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conversion of biomass into chemical products with solar energy is an important avenue for technological sustainability. Constructing efficient Schottky heterojunctions with vacancy defects can be a productive approach for achieving photooxidation of 5-hydroxymethylfurfural (HMF). Herein, sulfur vacancy (Vs) defect-enriched ZnIn2S4 is combined with Ti3C2Tx MXene (Vs-ZIS/MX) containing Schottky heterojunctions via self-assembly to form photocatalysts for efficient oxidation of HMF to 2,5-diformylfuran (DFF) under air-ambient conditions. HMF conversion of 87.3% with 72.9% DFF selectivity is obtained by the Vs-ZIS/MX heterojunction photocatalyst under visible light (420 nm < λ <780 nm, 2 h). Density functional theory calculations reveal that the Schottky heterojunction and regulated S vacancies enhance the electronic coupling and lower HMF adsorption energy, establishing a directional electron transfer channel from Vs-ZIS to MXene and an enhanced built-in electric field. Extended X-ray absorption fine structure spectroscopy shows that a stable metal (Zn)O bond coordination is formed between Vs-ZIS and MXene, and the enrichment of local electrons at S vacancy defects sites and metal-O coordination makes it possible to extract the delocalized electrons from ZIS to MXene. This work demonstrates a method to modulate the electron cloud density and enhance transport with a built-in electric field on photogenerated carriers for catalytic conversion of organic alcohols.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology