A Hierarchically Structured, Stretchable, Anti-Biofouling Encapsulation for Biodegradable Electronics.

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Won Bae Han, Sungkeun Han, Gwan-Jin Ko, Ulziituya Batjargal, Wonjun Jang, Venkata Ramesh Naganaboina, Han-Jun Kim, Suk-Won Hwang
{"title":"A Hierarchically Structured, Stretchable, Anti-Biofouling Encapsulation for Biodegradable Electronics.","authors":"Won Bae Han, Sungkeun Han, Gwan-Jin Ko, Ulziituya Batjargal, Wonjun Jang, Venkata Ramesh Naganaboina, Han-Jun Kim, Suk-Won Hwang","doi":"10.1002/adhm.202503622","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradable polymers have been employed as encapsulants for transient, resorbable implantable devices due to moderate water permeability, mechanical flexibility, and biocompatibility, however most of them relatively lack inherent anti-biofouling properties. This limitation can lead to undesired protein adsorption, cell adhesion, and fibrotic encapsulation, compromising device function and biocompatibility, particularly for long-term implantation scenarios. Here, this study introduces a soft, stretchable, and anti-biofouling encapsulant engineered by integrating self-assembled organosilicon nanowire networks onto micropatterned biodegradable elastomers. The resulting hierarchical surface architecture imparts superhydrophobicity while preserving mechanical integrity, improving water barrier performance by up to 420% compared to unmodified films and retaining stability under cyclic strains. Integration into a transient, stretchable optoelectronic device enables prolonged operation in aqueous environments, and in vitro and in vivo evaluations demonstrate suppressed cell adhesion, reduced fibrotic tissue formation, and excellent biocompatibility, highlighting the potential for long-lasting, bioresorbable electronic implants.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e03622"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202503622","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biodegradable polymers have been employed as encapsulants for transient, resorbable implantable devices due to moderate water permeability, mechanical flexibility, and biocompatibility, however most of them relatively lack inherent anti-biofouling properties. This limitation can lead to undesired protein adsorption, cell adhesion, and fibrotic encapsulation, compromising device function and biocompatibility, particularly for long-term implantation scenarios. Here, this study introduces a soft, stretchable, and anti-biofouling encapsulant engineered by integrating self-assembled organosilicon nanowire networks onto micropatterned biodegradable elastomers. The resulting hierarchical surface architecture imparts superhydrophobicity while preserving mechanical integrity, improving water barrier performance by up to 420% compared to unmodified films and retaining stability under cyclic strains. Integration into a transient, stretchable optoelectronic device enables prolonged operation in aqueous environments, and in vitro and in vivo evaluations demonstrate suppressed cell adhesion, reduced fibrotic tissue formation, and excellent biocompatibility, highlighting the potential for long-lasting, bioresorbable electronic implants.

一种用于生物可降解电子产品的分层结构、可拉伸、抗生物污染封装。
可生物降解聚合物由于具有适度的透水性、机械柔韧性和生物相容性,已被用作瞬态可吸收植入式装置的包封剂,然而,它们中的大多数相对缺乏固有的抗生物污染性能。这种限制可能导致不希望的蛋白质吸附、细胞粘附和纤维化包封,损害设备功能和生物相容性,特别是长期植入情况。在这里,本研究介绍了一种柔软、可拉伸、抗生物污染的密封剂,该密封剂通过将自组装的有机硅纳米线网络集成到微图案可生物降解弹性体上而设计。由此产生的分层表面结构赋予了超疏水性,同时保持了机械完整性,与未经改性的薄膜相比,水屏障性能提高了420%,并在循环应变下保持了稳定性。集成到一个瞬时的、可拉伸的光电器件中,可以在水环境中延长操作时间,体外和体内评估表明,抑制细胞粘附,减少纤维化组织形成,具有良好的生物相容性,突出了持久的、生物可吸收的电子植入物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信