{"title":"Agarose/PNIPAAm semi-interpenetrating network hydrogels with enhanced mechanical and optical properties for thermoregulating smart windows.","authors":"Chun-Yen Wu, Hong-Ren Jiang","doi":"10.1039/d5sm00707k","DOIUrl":null,"url":null,"abstract":"<p><p>We report a novel semi-interpenetrating network (s-IPN) hydrogel fabricated using a simple diffusion method that incorporates poly(<i>N</i>-isopropylacrylamide) (PNIPAAm) into agarose matrices. The agarose serves as a structural framework while PNIPAAm provides thermoresponsive capability, creating a straightforward, stable, and thermally responsive material for practical applications. This approach notably reduces volume shrinkage from 80-90% (typical of pure PNIPAAm) to approximately 12%, corresponding to only 4% linear thermal contraction, while preserving complete thermoresponsive functionality. The optimized composition (2% agarose/8% PNIPAAm) exhibits approximately 90% visible light transmittance at room temperature while becoming opaque above its lower critical solution temperature (LCST) of 32.1 °C. Thermogravimetric analysis and FTIR spectroscopy reveal enhanced thermal stability and molecular interactions between the agarose and PNIPAAm networks through hydrogen bonding. The properties of the PNIPAAm-agarose s-IPN hydrogel can be systematically controlled by simply adjusting the concentration of each polymer, enabling customization of the smart hydrogel properties. When incorporated into a glass-polymer-glass sandwich structure, these s-IPN hydrogels function effectively as smart window materials, providing autonomous temperature regulation by modulating solar transmittance in response to temperature changes.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00707k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a novel semi-interpenetrating network (s-IPN) hydrogel fabricated using a simple diffusion method that incorporates poly(N-isopropylacrylamide) (PNIPAAm) into agarose matrices. The agarose serves as a structural framework while PNIPAAm provides thermoresponsive capability, creating a straightforward, stable, and thermally responsive material for practical applications. This approach notably reduces volume shrinkage from 80-90% (typical of pure PNIPAAm) to approximately 12%, corresponding to only 4% linear thermal contraction, while preserving complete thermoresponsive functionality. The optimized composition (2% agarose/8% PNIPAAm) exhibits approximately 90% visible light transmittance at room temperature while becoming opaque above its lower critical solution temperature (LCST) of 32.1 °C. Thermogravimetric analysis and FTIR spectroscopy reveal enhanced thermal stability and molecular interactions between the agarose and PNIPAAm networks through hydrogen bonding. The properties of the PNIPAAm-agarose s-IPN hydrogel can be systematically controlled by simply adjusting the concentration of each polymer, enabling customization of the smart hydrogel properties. When incorporated into a glass-polymer-glass sandwich structure, these s-IPN hydrogels function effectively as smart window materials, providing autonomous temperature regulation by modulating solar transmittance in response to temperature changes.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.