Density Functional Theory for Molecular and Periodic Systems in TURBOMOLE: Theory, Implementation, and Applications

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Manas Sharma, , , Yannick J. Franzke, , , Christof Holzer, , , Fabian Pauly, , and , Marek Sierka*, 
{"title":"Density Functional Theory for Molecular and Periodic Systems in TURBOMOLE: Theory, Implementation, and Applications","authors":"Manas Sharma,&nbsp;, ,&nbsp;Yannick J. Franzke,&nbsp;, ,&nbsp;Christof Holzer,&nbsp;, ,&nbsp;Fabian Pauly,&nbsp;, and ,&nbsp;Marek Sierka*,&nbsp;","doi":"10.1021/acs.jpca.5c02937","DOIUrl":null,"url":null,"abstract":"<p >This work provides a detailed overview of density functional theory (DFT) methods for treating molecular and periodic systems within the TURBOMOLE software package. The implementation employs Gaussian-type orbitals and is based on efficient real-space techniques and density-fitting approaches for Coulomb interactions. Recent developments are reviewed, including the treatment of relativistic effects with effective core potentials, the incorporation of spin–orbit coupling via two-component formalisms, and the extension to real-time time-dependent DFT (RT-TDDFT). Embedding schemes based on frozen-density and projection-based approaches are also discussed, enabling the combination of DFT with high-level correlated wave function methods and many-body perturbation theory for selected subsystems. Representative applications demonstrate the capabilities across bulk materials, surfaces, low-dimensional nanostructures, and adsorption processes. Additionally, a web-based graphical interface has been developed to support input generation, structure manipulation, and output analysis. By consolidating theoretical foundations, implementation strategies, and application examples, this work provides a reference for the use of periodic DFT methods in quantum chemical and materials science studies.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 39","pages":"9062–9083"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c02937","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.5c02937","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work provides a detailed overview of density functional theory (DFT) methods for treating molecular and periodic systems within the TURBOMOLE software package. The implementation employs Gaussian-type orbitals and is based on efficient real-space techniques and density-fitting approaches for Coulomb interactions. Recent developments are reviewed, including the treatment of relativistic effects with effective core potentials, the incorporation of spin–orbit coupling via two-component formalisms, and the extension to real-time time-dependent DFT (RT-TDDFT). Embedding schemes based on frozen-density and projection-based approaches are also discussed, enabling the combination of DFT with high-level correlated wave function methods and many-body perturbation theory for selected subsystems. Representative applications demonstrate the capabilities across bulk materials, surfaces, low-dimensional nanostructures, and adsorption processes. Additionally, a web-based graphical interface has been developed to support input generation, structure manipulation, and output analysis. By consolidating theoretical foundations, implementation strategies, and application examples, this work provides a reference for the use of periodic DFT methods in quantum chemical and materials science studies.

TURBOMOLE中分子和周期系统的密度泛函理论:理论、实现和应用。
这项工作提供了密度泛函理论(DFT)方法在TURBOMOLE软件包中处理分子和周期系统的详细概述。该实现采用高斯型轨道,并基于有效的实空间技术和库仑相互作用的密度拟合方法。综述了近年来的研究进展,包括用有效核心势处理相对论效应,通过双分量形式纳入自旋-轨道耦合,以及扩展到实时时变DFT (RT-TDDFT)。本文还讨论了基于冷冻密度和投影方法的嵌入方案,使DFT与高阶相关波函数方法和多体摄动理论相结合,用于选定的子系统。代表性的应用展示了在大块材料、表面、低维纳米结构和吸附过程中的能力。此外,还开发了一个基于web的图形界面来支持输入生成、结构操作和输出分析。通过巩固理论基础、实现策略和应用实例,为周期DFT方法在量子化学和材料科学研究中的应用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信