Farajollah Zare Jouneghani, Reza Ghomashchi, Marco Amabili, Mergen H Ghayesh
{"title":"Biomechanical stress profiling in coronary arteries via two-phase blood FSI.","authors":"Farajollah Zare Jouneghani, Reza Ghomashchi, Marco Amabili, Mergen H Ghayesh","doi":"10.1007/s10237-025-02012-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the biomechanical stress determination of the left circumflex (LCx) coronary artery reconstructed based on in vivo angiography images via the development of a comprehensive biomechanical model incorporating a two-phase two-way coupled three-dimensional fluid-structure interaction (FSI). The blood flow is modelled as a two-phase pulsatile fluid, with 45% red blood cells and 55% plasma, and the artery wall is modelled as a soft viscohyperelastic material that is able to dynamically react to the blood-induced pressure. The flow characteristics, such as pressure, velocity, phase distribution, near-wall haemodynamic parameters, and flow-induced indices, are determined. The von Mises stress (VMS) and the deformation field of the arterial wall are also obtained. Comparing results based on the two-phase FSI model and those of a single-phase FSI show that taking into account the red blood cells alters the stresses, providing a better understanding of potential cardiovascular events. In all the cases investigated in this study, the wall shear stress (WSS) levels predicted by the two-phase FSI model are consistently lower than those obtained from the single-phase simulations. For example, at the location of maximum WSS during peak systole, the single-phase simulation employing the Quemada viscosity model predicts 143.43 Pa, whereas the single-phase simulation based on the power-law model predicts 39.85 Pa. In contrast, the two-phase model yields a substantially lower value of 24.79 Pa.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-02012-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the biomechanical stress determination of the left circumflex (LCx) coronary artery reconstructed based on in vivo angiography images via the development of a comprehensive biomechanical model incorporating a two-phase two-way coupled three-dimensional fluid-structure interaction (FSI). The blood flow is modelled as a two-phase pulsatile fluid, with 45% red blood cells and 55% plasma, and the artery wall is modelled as a soft viscohyperelastic material that is able to dynamically react to the blood-induced pressure. The flow characteristics, such as pressure, velocity, phase distribution, near-wall haemodynamic parameters, and flow-induced indices, are determined. The von Mises stress (VMS) and the deformation field of the arterial wall are also obtained. Comparing results based on the two-phase FSI model and those of a single-phase FSI show that taking into account the red blood cells alters the stresses, providing a better understanding of potential cardiovascular events. In all the cases investigated in this study, the wall shear stress (WSS) levels predicted by the two-phase FSI model are consistently lower than those obtained from the single-phase simulations. For example, at the location of maximum WSS during peak systole, the single-phase simulation employing the Quemada viscosity model predicts 143.43 Pa, whereas the single-phase simulation based on the power-law model predicts 39.85 Pa. In contrast, the two-phase model yields a substantially lower value of 24.79 Pa.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.