Accelerating fusion research via supercomputing

IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Frank Jenko
{"title":"Accelerating fusion research via supercomputing","authors":"Frank Jenko","doi":"10.1038/s42254-025-00837-1","DOIUrl":null,"url":null,"abstract":"The pursuit of fusion energy is gaining momentum, driven by factors including advances in high-performance computing. As the need for sustainable energy solutions grows ever more urgent, supercomputing emerges as a key enabler, accelerating fusion power toward practical realization. Supercomputers empower researchers to simulate complex plasma dynamics with remarkable precision, aiding in the prediction and optimization of plasma confinement and stability — both essential for sustaining burning plasmas. They also have a critical role in assessing the resilience of materials exposed to the extreme conditions of future fusion power plants. As the fusion community transitions from laboratory experiments to pilot plants, supercomputing bridges the gap between scientific discovery and engineering implementation, and it promises to reduce costs and shorten development timelines. Against a backdrop of global energy demands, it would be helpful to accelerate the transition of fusion energy from laboratory experiments to working power plants. This Perspective discusses areas of fusion energy research that are benefitting from supercomputing, such as simulations of complex plasma behaviour and materials under extreme conditions.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"365-377"},"PeriodicalIF":39.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00837-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of fusion energy is gaining momentum, driven by factors including advances in high-performance computing. As the need for sustainable energy solutions grows ever more urgent, supercomputing emerges as a key enabler, accelerating fusion power toward practical realization. Supercomputers empower researchers to simulate complex plasma dynamics with remarkable precision, aiding in the prediction and optimization of plasma confinement and stability — both essential for sustaining burning plasmas. They also have a critical role in assessing the resilience of materials exposed to the extreme conditions of future fusion power plants. As the fusion community transitions from laboratory experiments to pilot plants, supercomputing bridges the gap between scientific discovery and engineering implementation, and it promises to reduce costs and shorten development timelines. Against a backdrop of global energy demands, it would be helpful to accelerate the transition of fusion energy from laboratory experiments to working power plants. This Perspective discusses areas of fusion energy research that are benefitting from supercomputing, such as simulations of complex plasma behaviour and materials under extreme conditions.

Abstract Image

通过超级计算加速核聚变研究
在高性能计算技术进步等因素的推动下,对核聚变能源的追求正在获得动力。随着对可持续能源解决方案的需求日益迫切,超级计算成为关键的推动者,加速了核聚变的实际实现。超级计算机使研究人员能够以惊人的精度模拟复杂的等离子体动力学,帮助预测和优化等离子体约束和稳定性——这两者都是维持等离子体燃烧的必要条件。它们在评估未来核聚变发电厂的极端条件下材料的弹性方面也起着关键作用。随着核聚变社区从实验室实验过渡到试点工厂,超级计算弥合了科学发现和工程实现之间的差距,它有望降低成本并缩短开发时间。在全球能源需求的背景下,加速聚变能从实验室实验到工作电厂的过渡将是有帮助的。本展望讨论了受益于超级计算的核聚变能研究领域,例如极端条件下复杂等离子体行为和材料的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信